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Embedded systems are increasingly networked and distributed, often, such as in the Internet of Things (IoT),

over open networks with potentially unbounded delays. A key challenge is the need for real-time guarantees

over such inherently unreliable and unpredictable networks. Generally, timeouts are used to provide timing

guarantees while trading off data losses and quality. The schedule of distributed task executions and network

timeouts thereby determines a fundamental latency-quality trade-off that is, however, not taken into account by

existing scheduling algorithms. In this paper, we propose an approach for scheduling of distributed, real-time

streaming applications under quality-latency goals. We formulate this as a problem of analytically deriving a

static worst-case schedule of a given distributed dataflow graph that minimizes quality loss while meeting

guaranteed latency constraints. Towards this end, we first develop a quality model that estimates SNR of

distributed streaming applications under given network characteristics and an overall linearity assumption.

Using this quality model, we then formulate and solve the scheduling of distributed dataflow graphs as a

numerical optimization problem. Simulation results with random graphs show that quality/latency-aware

scheduling improves SNR over a baseline schedule by 50% on average. When applied to a distributed neural

network application for handwritten digit recognition, our scheduling methodology can improve classification

accuracy by 10% over a naive distribution under tight latency constraints.
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1 INTRODUCTION
Embedded systems are becoming increasingly distributed and networked. In many cases, such as

the Internet of Things (IoT), they use open networks that can have losses and unpredictable or

potentially unbounded delays. At the same time, embedded applications often interact with the

physical world and have hard real-time requirements. A key challenge in deployment of distributed

embedded applications is to enable distributed hard real-time execution over such open networks.

Traditional distributed computing and IoT frameworks do not support real-time execution [1, 10,
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Fig. 1. Overview of quality/latency-aware scheduling.

16, 23]. Various extension have been proposed to address real-time constraints [21, 30], but their

guarantees depend on worst-case network latency bounds. By contrast, there exist networking

protocols for real-time data transfers over open networks, but they are intended for end-to-end

communication and not distributed computing [22]. In the embedded community, there have been

proposals to extend traditional Models of Computation (MoC) for distributed applications [30].

However, such approaches aim to fit existing models to distributed systems by requiring high

precision time synchronization and reliable networks with bounded latency.

Many embedded applications are of streaming nature and, therefore, are best expressed as

dataflow MoCs. In such models, when using a traditional data-driven schedule for dataflow graphs

with actors mapped to open network hosts, no latency guarantee can be provided for the graph’s

output. To provide an end-to-end latency guarantee, the sink actor’s wait time on input can be

limited by allowing it to time out and fire without data similar to what is done in networking

protocols [22]. The more relaxed this latency and hence timeout constraint is, the more likely it is

that input data will arrive at the sink before it fires. If data is not present at the time of firing, the

sink will have to handle the data losses, e.g. by interpolating the missing data from previous inputs,

which will result in quality degradation. As such, there is a fundamental trade-off between latency

and quality in distributed real-time execution. Existing work has not studied such quality/latency

trade-offs. In the networking community, trade-offs have been explored for end-to-end actor pairs,

but it has not been addressed how to extend such approaches to longer, distributed actor chains. A

key question is thereby how to optimally distribute an end-to-end latency budget across multiple

links to optimize overall application quality.

Recently, an extension of dataflow models targeting distributed execution called Reactive and

Adaptive Dataflow (RADF) has been proposed [8]. It formalizes the notion of network losses and

firing of actors without data in a deterministic and sound manner using concepts of lossy channels

and empty tokens. This enables static analysis, but the authors do not discuss how to detect losses,

assign timeouts and derive quality/latency-optimized RADF schedules.

In this paper, we present a quality/latency-aware methodology for real-time scheduling of

distributed dataflow graphs over unpredictable and unreliable open public networks. To the best

of our knowledge, this is the first work to address this problem. We propose a static scheduling

and analysis approach that optimizes worst-case guarantees on average quality of distributed

streaming applications while satisfying latency constraints. Resulting schedules provide a baseline

that can be further improved at runtime. Figure 1 shows the overview of our methodology. Our

scheduling algorithm takes streaming applications expressed as distributed dataflow graphs, a
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Fig. 2. Examples of distributed dataflow graphs.

network specification, actor-to-host mapping, and latency constraints as inputs and produces a

quality/latency optimal schedule.

Our main contributions in this paper are:

(1) We formalize the distributed real-time execution of streaming applications under latency

constraints as an extension of existing RADF models.

(2) We develop an analytical quality model for translating channel delivery rates into overall

application quality of distributed dataflow graphs.

(3) We formulate distributed scheduling under latency constraints and quality goals as an

optimization problem and develop an approach to numerically solve such problems.

(4) We evaluate our approach on random graphs and a distributed neural network application,

demonstrating that optimized schedules can improve quality of random graphs by 50% on

average while increasing neural network classification accuracy by 10% under tight latency

constraints over a baseline distribution.

The rest of the paper is organized as follows: In Sections 2 and 3, we first motivate the need

for quality/latency-aware scheduling through an example and discuss related work. Then, we

present our formalization of distributed dataflow in Sections 4. We discuss the quality model and

formulation of the scheduling problem in Section 5. Evaluation of our methodology is described in

Section 6. Finally, Section 7 concludes the paper with a summary and directions for future work.

2 MOTIVATIONAL EXAMPLE
Figure 2a shows a simple dataflow graph with a linear chain of actors executed in a distributed

fashion on three network nodes or hosts (h0 through h2). To provide a latency guarantee, we assign

a timeout to the sink actor (C) and allow it to fire without data. Given that dataflow graphs often

execute in steady state periodically, the timeout of actor C between firings translates into an offset

between its firing time and that of actor A. This offset can be statically calculated by subtracting

C’s worst-case execution time from the latency constraint. The more relaxed this constraint is, the

more likely it is that input data will arrive at C before it fires.

In addition to sink actor, intermediate actors might require their own timeout in cases where data

order is important, such as actors with multiple inputs or with state. Figure 2b shows an example

of such a graph, where actor A fuses data from X and Y. If A receives data on one input, it would

need to buffer and wait until matching data is received on the other input. The RADF model and

our work is based on allowing not only the sink but any actor in a graph to fire without (or only

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: October 2019.



1:4 Mirzazad, et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t (ms)

it
e

ra
ti

o
n

X0/Y0 Net Net NetA0 B0 C0

X1/Y1 Net A1 Net B1 Net C1

X2/Y2 A2Net Net B2 C2

18

Net

X3/Y3 Net A3 Net Stall B3 C3Net

Stall

Stall Stall

(a) A pure data-driven schedule.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t (ms)

it
e

ra
ti

o
n

X0/Y0 Net Net NetA0 B0 C0

X1/Y1 Net A1 Net B1 Net C1

X2/Y2 A2Net Net B2 C2

18

Net

X3/Y3 Net A3 Net B3 C3Net

A1 and A2 fire
with no data

(b) A schedule with uniform latency budget distribution.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t (ms)

it
e

ra
ti

o
n

X0/Y0 Net Net NetA0 B0 C0

X1/Y1 Net A1 Net B1 Net C1

X2/Y2 A2Net Net B2 C2

18

Net

X3/Y3 Net A3 Net B3 C3Net

Only A1 fires
with no data

(c) A schedule with optimized latency budget distribution.

Fig. 3. Comparison of different schedules for graph of Figure 2b.

with partial) data and in turn produce outputs with reduced quality, e.g., by interpolating results

from previous data. If delays exceed overall latency constraints, at least one of the actors in the

chain needs to fire without data. Since it is better to allow partial computation with a single input

at A rather than letting C fire without any data, A can be assigned its own timeout. This introduces

further trade-offs: the smaller the offset of A relative to X/Y is, the higher the data loss at A and the

lower the loss at C, and vice versa. Further extending the timeout concept, even actor B can time

out to react to network delay and loss earlier in the chain.

Figure 3 shows three different schedules for the graph of Figure 2b under period and latency

constraints of 1ms and 13ms, respectively. Figure 3a shows a pure data-driven schedule. Due to

increased network delay in the second iteration, the constraint is violated in the second, third and,

subsequently, all following iterations. Note that if actors A, B and C are allowed to fire out of order,

violations in the third and subsequent iterations can be avoided. However, in general dataflow

graphs, e.g., in case of actors with state, deterministic token and actor firing orders need to be

maintained, where large network delays or network losses can lead to long-lasting or permanent

latency violations in a data-driven schedule.

In Figure 3a, we can allow sink actor C to time out and thus avoid deadline violations. However,

this would require C to fire without data in the second and all subsequent iterations. By contrast,

Figure 3b shows a schedule where the latency budget is equally distributed between input channels

of actors A, B and C, giving each a timeout of 3ms. As seen in the figure, the constraint is met in all

four iterations, but in the second and third iteration, A fires without any data. Crucially, however,

rather than violating the deadline in all subsequent iterations, this schedule avoids any losses in
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the fourth and following iterations. Noticing that increasing the timeout of actor A can eliminate

its loss in the third iteration, Figure 3c shows an alternative schedule where delay budgets are

shifted by 1ms from C to A. This schedule prevents A from firing without data in the third iteration

and improves overall quality. This example shows that, depending on the network and application

characteristics, there is a non-trivial schedule that optimizes the quality/latency trade-off.

For a simple graph such as the one in Figure 2a, the output quality can be defined as the number

of iterations that execute without a loss. We can assign a probability of an actor firing without a loss

as the probability of the random network delay on its input channel being smaller than the timeout.

The probability of an iteration executing without a loss then becomes the product of loss-free

probabilities over all actors and links in the chain. To maximize this product, all probabilities should

be made equal. This requires timeouts to be selected in accordance with differences in network

delays across channels. Furthermore, in general graphs, more complex, application-specific quality

models will be needed to derive optimal timeouts.

3 RELATEDWORK
There exist many frameworks that enable programming in the context of distributed systems by

supporting Remote Procedure Call (RPC) [1, 10, 16, 19, 23], message-passing [6, 9] and streaming [3,

13, 18, 26, 28] semantics. However, the resulting programs cannot provide latency guarantees.

Stream processing frameworks [3, 13, 26, 28] claim to provide real-time dataflow processing,

but they focus on throughput-oriented processing without hard real-time guarantees nor explicit

consideration of network effects, and either require reliable communication or randomly discard

data.

In the networking community, the real-time transfer protocol (RTP) [22] has been used for

video and audio streaming. RTP delivers timing guarantees by exposing the occasional late and

lost packets to applications. However, it is limited to end-to-end transfers and does not allow

for implementation of distributed scenarios. RTP can be extended to distributed graphs using a

data-driven schedule for intermediate nodes and only timing out the sink node. As described in

Section 2, such a setup works if intermediate nodes are allowed to fire in any order, similar to how

internet routers process packets. However, in distributed execution of dataflow graphs, such an

approach can lead to large quality drops as shown in Figure 3a. Alternatively, RTP can be applied

to every actor pair in a larger distributed graph. However, doing so requires optimally partitioning

end-to-end latency budgets between pairs, which is the problem we address in our work.

In the embedded domain, extensions of RPC frameworks have been proposed to enable dis-

tributed real-time computing [21]. However, they assume underlying networks to provide real-time

guarantees and do not consider quality trade-offs. Using more formal model-based methods, exten-

sions of traditional MoCs have been proposed for distributed systems. PTIDES [30] builds upon

a discrete-event model to provide deterministic and real-time execution for distributed cyber-

physical systems through static analysis and global ordering of timestamped events. However, it

requires high-precision time synchronization and reliable networks with bounded latency that is

not generally achievable or only provided with very loose guarantees in open public networks.

PTIDES abstracts away the network non-determinism using worst-case assumptions and does

not have a notion of quality/latency trade-offs. There also has been proposals to extend data flow

models to capture dynamic network effects by accounting for lossy scenarios and failure probabili-

ties [7, 8, 29]. However, they either target the permanent link failures [29] or require analysis of

multiple scenarios [7] rather than exposing latency/quality trade-offs. By contrast, RADF extends

a data flow model with concepts of lossy channels and empty tokens supporting open network

scenarios while guaranteeing deterministic execution and static analyzability [8]. However, their

model is underspecified, the authors do not provide an implementation, and included analysis
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methods do not account for quality or latency associated with network communication. In this

paper, we base our work on RADF but extend model semantics to support quality/latency-aware

scheduling. We will discuss RADF semantics, limitations and our extensions in Section 4.

In the machine learning community, motivated by the increasing popularity of deep learning

applications and limitations of embedded devices, there have been multiple proposals for specifically

distributing inference of neural networks across network hosts [14, 20, 31]. These works, however,

either ignore network effects and quality/latency trade-offs [14, 31] or are application-specific [20].

In this work, we use the example of a two-layer, distributed neural network for handwritten digit

recognition [11, 24] to systematically optimize the quality/latency trade-off using our generic

scheduling approach.

4 DISTRIBUTED DATAFLOWMODEL
In this section, we discuss the Reactive and Adaptive Dataflow Model (RADF) that we use for

formalization of distributed streaming applications and our proposed timed extensions.

4.1 RADF Basis
RADF [8], in addition to traditional lossless channels, provides lossy channels that do not require
communication to be reliable. Losses in these channels are represented by replacing lost token(s)

with empty token(s). This simple extension allows preserving analyzability and determinism of the

underlying data flow model even in the presence of unreliable communication.

Although RADF can be based on top of any data flow model, it is introduced on a Synchronous

Data Flow (SDF) basis [8]. Following SDF semantics, every actor has a firing rule that specifies
firing conditions in terms of the number of tokens consumed from input channels and the number

of tokens produced in output channels. Given the existence of both empty and non-empty tokens,

RADF actors with lossy input channels can have multiple firing rules. Each of these rules correspond

to a unique pattern of empty and non-empty input tokens and results in execution of a corresponding

actor variant. Upon firing, an RADF actor can consume empty tokens as well as non-empty tokens,

but is required to produce non-empty tokens regardless. Having multiple variants with potentially

different execution characteristics allows applications to dynamically adapt to network losses.

To support modeling of reactivity to external events, RADF further allows the absence of data in

external input channels to be modeled as generation of empty tokens. By allowing actors to have an

idle variant, RADF does not require those actors to execute unless there is at least one non-empty

token in their input channels. Idle variants are fired when all input tokens are empty and generate

an all empty token sequence. Therefore, they can be used to model actors that are executed under

data-driven schedule. Actors with idle variant can, in turn, form a reactive island, which refers to a

largest chain of actors with idle variants and producer-consumer relationship, where none of the

actors in the island executes unless the source actor(s) receive a non-empty token.

4.2 Timed RADF Extension
RADF semantics simplify the distributed execution of actors by basing it on only patterns of empty

and non-empty tokens in input channels. However, in practice, any RADF implementation in turn

requires an approach for detecting losses and injecting empty tokens. In particular, while empty

tokens can make a self-timed and data-driven execution possible even in the presence of losses and

unbounded delays, this in turn creates the challenge of detecting losses and injecting empty tokens

while meeting real-time guarantees, which RADF itself does not address.

Since one can not wait for a token to not arrive, deciding on losses and empty tokens needs

to be based on waiting until some other event indicates that one should give up doing so. In a

distributed environment, these indicators need to be based on local information such as channel
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state or time. Basing such decisions purely on local channel state, such as waiting for a certain

number of non-empty tokens with higher sequence numbers to arrive, will not allow to provide

timing guarantees. Instead, decisions about empty tokens need to be based on some notion of time,

which locally can only translate to relative timeouts between firings. This is similar to RTP’s [22]

operation, where a receiver delivers a constant frame rate to an output device.

Motivated by these observations, we propose timed RADF (T-RADF) as amodel that extends RADF

graphs with constant rates attached to external input and output channels. External rates provide a

complete specification. With an SDF base, intermediate rates and thus timeouts for all actors can

be derived from them. This is also consistent with cyber-physical systems in which sensors and

actuators attached to external inputs and outputs come with specified timing constraints. Note that

external rates provide exact periods for actors interfacing to them, but only specify an average

period of intermediate actors. Therefore, as long as the implementation conforms to external rates,

it can vary the firing period of intermediate actors around a default period given by external rates.

Figure 4 shows a T-RADF graph with I0, I1 and O5 as external inputs and outputs. Dashed lines

between actors depict lossy channels. Solid lines, by contrast, represent lossless channels. I0 and
I1 sample inputs with rates of 15ms and 45ms, respectively. O5 produces outputs at a rate of 1ms.

Based on the input rates and repetition relationships between producer-consumer pairs, periods for

a0 – a5 can be derived as 15, 45, 15, 15, 5 and 1 ms, respectively, where the period of a5 is consistent
with the rate of O5.

5 DISTRIBUTED DATAFLOW SCHEDULING
For distributed execution of T-RADF graphs under given latency constraints, we need to derive

timeouts and other implementation parameters. In addition to the graph, this requires worst-case

execution time (WCET) information about each actor, mapping information, latency constraints

and a network specification to be known. Without loss of generality, we perform scheduling of

graphs assuming a given, pre-determined partitioning, mapping and distribution of the graph across

network hosts. Mapping information specifies how actors and network channels are assigned to

hosts and network interfaces, respectively. Latency constraints are defined per primary input-

output pair as the time offset between start of execution of the input actor and end of execution of

the output actor in any iteration. The network specification lists delay and loss characteristic of

network paths between hosts. Network delays are assumed to be continuous random variables that

are specified in terms of a Network Delay Distribution (NDD), i.e. a probabilistic distribution model

that specifies the likelihood of a given one-way network delay in absence of any retransmission [2].

To provide static guarantees, we derive and analyze a baseline firing schedule of T-RADF actors.

Meeting latency constraints requires upper bounding of computation and communication times.

Analysis of worst-case execution times is a well-studied topic. By contrast, communication delays

in public networks are in general unbounded. This fundamentally does not allow any upper bound

for latency of lossless channels to be assumed. By contrast, with lossy channels, a given delay limit

can be imposed through timeouts.
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The random nature of network delays has two implications on the implementation of lossy

channels. Firstly, tokens with delays larger than the set limit will be exposed to the application as

empty tokens and therefore affect the result quality. Although using larger timeouts can reduce

the number of late tokens, it increases end-to-end latency. We optimize this trade-off between

latency and result quality by calculating timeouts and a baseline schedule to maximize output

quality under given period and latency constraints. Note that this does not prevent any runtime

from further optimizing the latency or quality dynamically. Instead, our approach aims to provide

a static schedule that guarantees analytically derived worst-case quality and latency as long as

an implementation does not violate the timeouts, i.e. the upper bounds on offsets between actor

executions computed by our analysis.

In addition to schedule and timeout computation, since tokens in open networks might arrive out-

of-order, maintaining FIFO channel semantics requires buffering of tokens at the destination. We

thus further ensure that no token will be lost due to buffer overflows by calculating the maximum

required buffer size statically.

5.1 Timeout and Schedule Computation
In the current work, we assume T-RADF graphs to be homogeneous and each host to execute

only one actor. Note that as with other dataflow scheduling approaches, general graphs can be

explicitly or implicitly converted to homogeneous equivalents during scheduling [12], but this

may come at the cost of exponential complexity in graph sizes. The assumption of one actor per

host can be satisfied by statically scheduling multiple actors mapped onto the same host into a

super-actor. In the general case, hierarchical composition of SDF actors can lead to deadlocks,

which can be addressed using relaxed cyclo-static dataflow semantics [17]. We plan to incorporate

such relaxations in future work.

Following T-RADF semantics, source and sink actors of a graph will always fire with a constant

period. However, analyzing a graph to derive a schedule that provides static guarantees requires

instantaneous timeouts of all intermediate actors, which are not specified in a T-RADF model,

to be statically derived. We perform a conservative analysis assuming a fixed schedule in which

all intermediate actors fire with a constant period as given by the specification. This reduces the

timeout problem to determining offsets between periodic actor executions while allowing for a

static analysis that provides upper bounds on latency and token losses. In practice, a schedule can

be dynamically adjusted to further optimize latency or quality at runtime, e.g. by firing actors and

sending outputs early if input tokens arrive before the start of the next period.

Figure 5 shows a graph with a chain of actors connected by lossy channels between actors and

hosts. This graph has only one input-output pair (a0,am−1) whose latency (l) is equal to the time

interval between consumption of a token by a0 and production of the corresponding token by am−1.
Given the execution time ei of actor ai and communication delay dj of channel c j :

l =
∑m−1

i=0 ei +
∑m−1

j=1 dj ≤ l ′, (1)

where l ′ is the latency constraint associated with the pair (a0,am−1). Note that external channels
c0 and cm are assumed to have zero communication delay and thus are excluded from the sum.
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Satisfying this constraint requires actor WCET bounds ei ≤ e ′i and channel delay bounds dj ≤ d ′j to
be known or derived, respectively. At the same time, the choice of d ′j determines the probability of

tokens being delivered empty as a function of the NDD and average packet loss rate. A channel c j
will be able to capture all the packets that do not get lost and have a delay of less than or equal to

d ′j . Thus, the probability pj of tokens in channel c j being delivered (be non-empty) as function of

its latency budget is:

pj (d
′
j ) = (1 − µ j ) · FD j (d

′
j ), (2)

where FD j (dj ) is the cumulative distribution function (CDF) of the random delay variable D j
associated with channel c j ’s NDD, and µ j is c j ’s average packet loss rate. Note that this equation
assumes that all packet losses and delays are independent.

To minimize the probability of empty tokens, d ′j should be maximized. For a given latency

constraint, optimal assignment of d ′j values such that result quality is maximized is generally

application-specific. How empty tokens are interpreted depends on actors’ replacement functions.
Therefore, to derive the optimal assignment, we need a quality model that relates individual pj to
overall application quality. In the following, we first develop a quality model that can be expressed

in closed form, which then allows us, using Equation 2, to formulate the scheduling problem as

a numerical optimization problem with delay assignments as decision variables and the quality

model as maximization goal. Tables 1 and 2 provide a summary of notations used for given and

derived variables in our formulation, respectively.

5.2 Quality Model
To define a quality model, first we need to choose a quality metric. In this work, we target typical

streaming and signal processing applications. As such, we use the signal-to-noise ratio (SNR) of the

output actor as the quality metric to optimize. Since analyzing SNR of streaming applications for

all possible cases is difficult, we limit ourselves to linear systems, i.e. cases where both actors and

replacement functions are linear time series of previously seen values. Other systems can in most

cases be supported by approximating them as linear. In the remainder of this section, we formulate

an efficient, closed-form quality model based on these assumptions.

We first investigate the simplest case of a graph with a linear chain of actors. In the graph of

Figure 5, we can quantify the potential noise nj [i] due to delivery failure in any channel c j in graph

iteration i as the absolute difference between the value sj [i] transmitted over channel c j in a lossless

execution and the estimate provided by the consumer actor’s replacement function R j ():

nj [i] = |sj [i] − R j (x j [0], . . . ,x j [i − 1])|. (3)

The replacement function R j (x j [0], . . . ,x j [i − 1]) determines the value that the actor substitutes for

the lost token as, in general, a function of previously seen actual, i.e. noisy values x j [i] = sj [i]+nj [i],
where noise is assumed to be additive.

To estimate overall quality, we need to determine the total noise at the output of the graph, i.e. in

channel cm . Towards this goal, we first quantify the relationship between loss in any intermediate

channel and noise at the graph output. In a linear system, the output of an actor is in general a

product of its input multiplied by a constant factor. We can formalize this assumption by associating

a weightw j with each actor and hence its output channel c j in the linear chain. With this, a value

sh[i] in any intermediate channel ch ,h < m propagates to the output as sm[i] = sh[i] ·
∏m

j=h+1w j .

Hence, if there is a failure in a channel ch in the chain, the failure noise at the output of the graph

becomes:

nm[i] = |sh[i] − Rh(xh)| ·
m∏

j=h+1

w j , (4)
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Table 1. Summary of input variables.

Variable Description

e ′(a) worst-case execution time of actor a
l ′(a,a′) latency constraint of actor pair (a,a′)

uj producer (actor) of channel j
vj consumer (actor) of channel j
−→w j weight vector of channel j
sj [i] noise-free value of channel j at iteration i
R j (x j ) replacement function of vj for channel j
α maximum nj [i]/sj [i] ratio across all iterations

Psj [i] noise-free signal power of channel j

k(j) set of paths leading to channel j
in(k) input channel of path k
out(k) output channel of path k
w̃k weight of path k

qj contribution of output channel j to overall quality

I set of input channels of graph

O set of output channels of graph

B set of channels with initial tokens (backedges)

F set of channels w/o initial tokens (forward edges)

L set of actor pairs with constrained latency

Table 2. Summary of derived variables.

Variable Description

ts (a) start time of actor a
ts set of start times {ts (a0), ts (a1), . . .}
d ′j latency budget of channel j

pj delivery probability of channel j
p̃k delivery probability of path k
p̃k |k ′ joint delivery probability of paths k and k ′

nj [i] noise in channel j at iteration i
x j [i] noisy signal value of channel j at iteration i
Nj [i] random noise of channel j at iteration i

Ñk [i] random noise associated with path k at iteration i
Pnj [i] expected noise power of channel j at iteration i
Psj [i] noise-free signal power of channel j at iteration i

P
path
sj [i]

signal power delivered on channel j
along individual paths at iteration i

P jointsj [i]
signal power delivered on channel j

along combinations of paths at iteration i
Q weighted average of output SNRs
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where xh = xh[0], . . . ,xh[i − 1] is the signal, i.e. time series of previously seen values in channel ch .
Assuming that replacement functions are chosen such that noise in any channel is bounded by

the noise-free signal value, i.e. there is a constant α such that nj [i] ≤ α · sj [i], we can derive an

upper bound on the noise at the graph output cm induced by a failure in an intermediate channel

ch as follows:

nm[i] ≤ α · sh[i] ·
m∏

j=h+1

w j (5)

Since the signal sh[i] in intermediate channel ch is itself a linear function of the graph’s input, the

noise bound can be re-written as a function of the input signal s0:

nm[i] ≤ α · s0[i] ·
m∏
j=1

w j = α · w̃ · s0[i], (6)

where w̃ =
∏m

j=1w j . As such, the noise bound becomes independent of the location h of the failure.

It can be further shown that the upper bound given by Equation 6 holds generally, regardless of

the number of failures.

Due to the probabilistic nature of lossy channels, the noise nm[i] is in reality a random variable

Nm[i], where the noise power Pnm [i] = E[N 2

m[i]] is computed as the expected value of the squared

noise. With probability of p̃ =
∏m

j=1 pj , none of the channels will fail and Nm[i] will be zero. By

contrast, with probability (1 − p̃), there will be at least one loss in a channel in the chain, with

failure noise that is upper bounded according to (6). As such, we can bound the noise power Pnm [i]
at the output of the linear chain as:

Pnm [i] = E
[
N 2

m[i]
]
≤ (1 − p̃)(α · w̃ · s0[i])

2. (7)

In the general case, actors of the graph might have more than one input or output. We can

generalize channel weights to a weight vector
−→w j , where every output of an actor is computed as a

weighted sum of its inputs. For each distinct path k = (cin(k ), . . . , cout(k )) in the graph from input

channel cin(k) to output channel cout(k ), we can thus define a path weight w̃k as the product of all

weight vector elements along the channels of the path. Similarly, p̃k is calculated as multiplication

of the pj ’s along the channels of path k . Finally, we can compute the noise Ñk [i] caused by path k at

its output channel cout(k ) as before. Under the linearity assumption, we can then express the output

noise in such generalized graphs as the sum of noises caused by paths k(m) = {km |out(km) =m}
ending at output cm . Therefore, and given that the expected value of a sum is equal to the sum of

expected values of its individual terms, we can calculate Pnm [i] at output cm as:

Pnm [i] = E
[
N 2

m[i]
]
= E

©«
∑

k ∈k(m)

Ñk [i]
ª®¬
2

= E


∑

k ∈k(m)

Ñ 2

k [i] + 2
∑

k,k ′,k,k ′∈k(m)

Ñk [i]Ñk ′[i]


=

∑
k ∈k(m)

E
[
Ñ 2

k [i]
]
+ 2

∑
k,k ′,

k,k ′∈k(m)

E
[
Ñk [i]Ñk ′[i]

]
.

(8)
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Substituting the bound on the noise power of an actor chain from (7) and noting that Ñk [i]Ñk ′[i] is
non-zero only when both paths k and k ′ fail to deliver, we can obtain an upper bound for Pnm [i] as:

Pnm [i] ≤
∑

k ∈k(m)

(1 − p̃k )
(
α2w̃2

ks
2

in(k )[i]
)

+2
∑
k,k ′,

k,k ′∈k(m)

(1 − p̃k |k ′)
(
α2w̃kw̃k ′sin(k )[i]sin(k ′)[i]

)
,

(9)

where p̃k |k ′ is the probability that at least one of the paths k or k ′ will deliver. We can simplify

Equation 9 by rearranging the terms:

Pnm [i] ≤ α2

(
Psm [i] −

(
P
path
sm [i] + 2P jointsm [i]

))
, (10)

and factoring out different components Psm [i], P
path
sm [i] and P jointsm [i] contributing to the noise

power bound given as:

Psm [i] =
©«
∑

k ∈k(m)

w̃ksin(k)[i]
ª®¬
2

P
path
sm [i] =

∑
k ∈k(m )̃

pkw̃
2

ks
2

in(k )[i]

P jointsm [i] =
∑

k,k ′,k,k ′∈k(m)

p̃k |k ′w̃kw̃k ′sin(k)[i]sin(k ′)[i].

(11)

Here, Psm is the total noise-free signal power at output cm , and intuitively, P
path
sm and P jointsm are the

portions of the signal power at cm that are delivered along individual or combinations of paths,

respectively, when they do not experience any losses.

Finally, we can obtain a lower bound on the SNR in iteration i at output channelm by dividing

the noise-free signal power by the noise power given by Equation 10:

SNRm[i] =
Psm [i]

Pnm [i]
≥

α−2

1 − Z j [i]
, (12)

where Zm[i] is:

Zm[i] =
P
path
sm [i] + 2P jointsm [i]

Psm [i]
. (13)

Assuming that the noise is upper bounded by the signal value (i.e., α ≤ 1), individual terms

dominate combinations (i.e., P
path
sm [i] » P jointsm [i] > 0) and inputs to different paths are comparable

(∀k,k ′ : sin(k )[i] ≈ sin(k ′)[i]), we can further simplify Equation 13 and obtain a time-independent

conservative estimate for SNRm :

SNRm ≈
1

1 − (P
path
sm [i]/Psm [i])

≈
1

1 − (
∑

k ∈k(m) p̃kw̃
2

k )/(
∑

k ∈k(m) w̃k )
2

.

(14)

For graphs with multiple output channels, a single quality metric Q can be defined as weighted

average of individual output SNRs:

Q =

∑
m∈O(qm · SNRm)∑

m∈O qm
, (15)
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where O is the set of output channels and qm describe their relative quality contributions.

5.3 Scheduling Formulation
We further aim to derive a static schedule that maximizes quality. We formulate the scheduling

as determining the start times ts (a) of actors within one graph iteration relative to the beginning

of the period. In Equations 14 and 15, p̃k depend on individual channels’ delivery probabilities pj ,
which following Equation 2, in turn depend on their latency budgets d ′j . In acyclic graphs, latency

budgets can be calculated from the differences in start times ts (a) of a channel’s producer and

consumer actors minus the WCET e ′(a) of the producer actor as follows:

d ′j = ts (vj ) − (ts (uj ) + e
′(uj )), j ∈ F, (16)

where uj and vj are the producer and consumer actors of channel j , respectively, and F is the set of

(forward) channels of the graph.

In case of cyclic graphs, the budget of channels with no initial tokens can be calculated similarly.

However, since tokens generated by the producer of a backedge channel with an initial token are

received by the consumer in the next iteration, the delay budget for such backedges (uj ,vj ) ∈ B
also depends on the period τ of the graph:

d ′j = (ts (vj ) + τ ) − (ts (uj ) + e
′(uj )), j ∈ B. (17)

Using Equations 16 and 17, Q from Equation 15 can be expressed as a function of a set of start

times ts = {ts (a0), ts (a1), . . .} and a period τ . Consequently, to derive the optimal schedule under

given latency and period constraints, we can formulate scheduling as an optimization problem with

start times as decision variables,Q(ts,τ ) as maximization goal, and producer-consumer dependency,

latency and period constraints:

maximize

ts
Q(ts ,τ )

subject to ts (vj ) ≥ ts (uj ) + e
′(uj ), ∀j ∈ F.

ts (vj ) + τ ≥ ts (uj ) + e
′(uj ), ∀j ∈ B.

(ts (a
′) + e ′(a′)) − ts (a) ≤ l ′(a,a′), ∀(a,a′) ∈ L,

(18)

where l ′(a,a′) is a latency constraint between actor pair (a,a′).
Note that, due to Equation 2, the optimization problem of Equation 18 is in general non-linear

and non-convex. However, since variables are continuous and the cost function is differentiable

and expressed in closed form, the optimization can be solved via iterative numerical approaches.

This requires repeatedly evaluating the quality function and computing its gradient with respect

to changes in start times. As shown in Equations 14 and 15, accounting for the noise-free signal

value (w̃k ) and delivered signal power (p̃kw̃
2

k ) contributions of every path to every output in each

such iteration would normally incur exponential complexity. In practice, we can compute the

quality function and its gradient by accumulating the partial contributions of different paths at

each intermediate channel and propagating signal and power values down the graph. This can be

achieved by traversing the graph in a breadth-first manner with linear complexity visiting each

channel only once. In case of acyclic graphs, the precedence graph for one iteration is traversed in

breadth-first order. In case of cyclic graphs, feedback through backedges has to be accounted for

through repeated traversals until either a fixed-point or sufficient convergence is reached.

Algorithm 1 gives the pseudocode for evaluation of Q and its gradient. The algorithm takes a

T-RADF graph G, start times ts, period τ , the cumulative distribution functions (CDFs) FD and

probability density functions (PDFs) fD of channel NDDs, the loss rates µ associated with each

channel, actor WCETs e′, and the number of iterations for cyclic graphs I (set to I = 1 otherwise)
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as input. The algorithm first initializes variables that maintain the partial noise-free signal values

sj , the partial delivered signal powers P
path
sj and their gradients ∇P

path
sj at each channel j to zero.

Note that signal values sj are independent of actor start times. To compute the gradient of the

quality function we thus only need to maintain the P
path
sj gradients. Then, each channel’s pj ’s and

their derivatives p̂j ’s with respect to d ′j are computed from start times using Equations 16 and 17.

Finally, signal values and powers of graph inputs and backedges are set to 1.0. Note that as shown
in Equation 14, initial values will later cancel out when computing final SNR andQ , i.e. their choice

does not matter.

Following the initialization, the algorithm starts performing iterations of breadth-first search

(BFS) traversals over the channels in the graph. In case of cyclic graphs, traversals are performed in

precedence graph order, i.e. starting from input and back edges in each iteration. For each channel

j, partial sj , P
path
sj and ∇P

path
sj are computed by iterating over all input channels of the channel’s

producer actor uj , i.e. all channels j
′
where vj′ = uj . Signal values are propagated from input

channel j ′ to channel j by adding the signal value of j ′ multiplied by the weightw j, j′ to sj . Likewise,
delivered signal power is calculated by multiplying the power of j ′ with the squared weightw2

j, j′

and the delivery probability pj′ of j
′
.

Computation of power gradients with respect to actor start times is more involved. In general,

the partial derivative of path k’s power contribution p̃kw̃
2

k with respect to the start time ts (az ) of
an actor az in that path can be derived as:

∂p̃kw̃
2

k

∂ts (az )
=w̃2

k
∂p̃k
∂ts (az )

= w̃2

k (
∏
j,x,y

pj ) ×
∂pxpy

∂ts (az )
, (19)

where x and y are the input and output channels of actor az in path k , respectively. According
to Equations 16 and 17, gradients with respect to start times of an actor translate into positive or

negative gradients with respect to the delay budgets of its output or input channels, respectively.

In other words:

∂p̃kw̃
2

k

∂ts (az )
= w̃2

k (
∏
j,x,y

pj ) · (px
∂py

∂ts (az )
+ py

∂px
∂ts (az )

)

= w̃2

k (
∏
j,x,y

pj ) · (−px p̂y + pyp̂x ),

(20)

where p̂x and p̂y are given as ∂px/∂d
′
x and ∂py/∂d

′
y , respectively. This shows that the input channel

x adds a positive term to the partial derivative with respect to its consumer’s (i.e., az ’s) start time.

Likewise, the output channel y adds a similar negative term with respect to what is in this case its

producer. Further refactoring these terms:

∂p̃kw̃
2

k

∂ts (az )
= − w̃2

k (
∏
j,x,y

pj ) · px p̂y + w̃
2

k (
∏
j,x,y

pj ) · pyp̂x

= − (
∏
j,y

w2

jpj ) ·w
2

yp̂y + (
∏
j,x

w2

jpj ) ·w
2

x p̂x .

(21)

As such, the positive term added by channel x to path k’s power derivative with respect to az ’s start
time is given by the multiplication ofw2

x p̂x with the power contribution of path k excluding x . The
output channel y adds a similar negative term. Looking at this from a channel perspective, we can

conclude that each channel j in path k contributes a negative and positive term to the derivative

of path k’s power contribution with respect to j’s producer (uj ) and consumer (vj ) start times,

respectively. During graph traversal, we in turn accumulate partial contributions to derivatives
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across all paths with respect to all start times at each channel. Contributions are propagated by

adding the partial terms contributed by each channel to its producer and consumer derivatives,

while scaling previously accumulated partial contributions w.r.t. other start times byw2

jpj . Following
this observation, the graph traversal algorithm propagates gradients of channels j ′ by first defining

a temporary variable

−→
δP that holds the gradient components of channel j ′ each scaled byw2

j, j′pj′ .

The algorithm then adjusts the partial derivatives w.r.t. j ′’s producer and consumer by adding terms

w2

j, j′p̂j′ multiplied by the partial power contribution at j ′. Finally,
−→
δP is added to the gradient of

channel j.

At the end of each traversal, the algorithm resets sj , P
path
sj and ∇P

path
sj of all channels that are not

inputs or backedges for the next iteration. Once all iterations are finished, the algorithm computes

and returns the final quality estimate Q and its gradient ∇Q as the weighted average over all graph

outputs according to Equation 15.

For a graph with n actors andm channels, the total space complexity of this algorithm isO(n ·m).
Since for each channel j, the algorithm loops over all incoming channels j ′ of the producer actor
(vj′ = uj ), the time complexity is equal to the average indegree of actors multiplied by the number

of channelsm in the graph. In directed graphs, each channel contributes one input, and the average

indegree ism/n. As such, the time complexity of the algorithm is O(I ·m2/n).
Given an efficient way to compute quality estimates and their gradients, we can apply a numerical

optimization algorithm to solve the problem from Equation 18. As mentioned above, due to the

probabilistic distribution of random variables, Q(ts,τ ), is neither linear nor convex. We apply a

constrained trust region (CTR) [5] algorithm to maximize Q . CTR is a gradient-based algorithm

that enables minimizing a generic, non-linear function subject to constraints. The termination

condition for this method is based on the norm of the Lagrangian gradient and it stops once a

stationary point for the Lagrangian has been found. Similar to other gradient-based methods, the

CTR algorithm can get stuck in local optima, which depends on the starting condition and can be

addressed by restarting optimizations from different points.

5.4 Buffer Sizing
To derive the size of the reorder buffer of a consumer of channel j, it is enough to note that in

steady-state periodic execution, during ∆tj = ts (vj ) − ts (uj ), actor uj can fire a maximum of ∆tj/τ
times. Additionally, the jitter of the channel c j can cause tokens from (Dmax

j − Dmin
j )/τ earlier

firings to arrive during this time, where Dmin
j and Dmax

j stand for minimum and maximum delay

of channel j and can be approximated by evaluating F−1D j
for small and large enough probabilities,

respectively. Combined, the reorder buffer size bj of vj can be computed as:

bj = ⌈(∆tj + (D
max
j − Dmin

j ))/τ ⌉ . (22)

Note that tokens not fitting into the buffer due to the approximation inDmin
j andDmax

j will translate

into empty tokens.

6 EXPERIMENTS AND RESULTS
We implemented our scheduling approach in Python using the NetworkX library and SciPy for opti-

mization. We have released our framework in open-source form at [15]. We perform five iterations

of graph traversals when evaluating the quality model for cyclic graphs. The starting condition

for all optimizations is a baseline schedule with uniform allocation that equally partitions latency

budgets across all channels of the paths between constrained actor pairs. In case of multiple paths

constraining a channel, the minimum budget is chosen. We set the threshold on the Langrangian

gradient norm for optimization to 10
−5
.
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Algorithm 1 Evaluation of Q and ∇Q .

1: procedure evalQ(G, ts, τ , FD, fD, µ, e′, I )
2: Initialize ∀j : sj ← 0

3: Initialize ∀j : Ppathsj ← 0,∇P
path
sj ← [0.0, . . . , 0.0]

4: Initialize ∀j : pj ← µ j × FD j (d
′
j (ts,τ , e‘))

5: Initialize ∀j : p̂j ← ∂pj/∂d ′j ← µ j × fD j (d
′
j (ts,τ , e

′))

6: Initialize ∀j ∈ I(G) ∪ B(G) : sj , Ppathsj ← 1.0

7: for i in 1, 2, . . ., I do
8: for channel j in bfs_edge_traversal(G) do
9: for all channels j ′,vj′ = uj do
10: sj +=w j, j′ · sj′

11: P
path
sj + = pj′ ·w

2

j, j′ · P
path
sj′

12:

−→
δP ← w2

j, j′pj′ · ∇P
path
sj′

13: δPuj′− = w
2

j, j′p̂j′ · P
path
sj′

14: δPvj′+ = w
2

j, j′p̂j′ · P
path
sj′

15: ∇P
path
sj +=

−→
δP

16: end for
17: end for
18: ∀j < I(G) ∪ B(G) : sj ← 0

19: ∀j < I(G) ∪ B(G) : Ppathsj ← 0,∇P
path
sj ← [0.0, . . . , 0.0]

20: end for
21: W ←

∑
j ∈O(G)(qj )

22: Q ← 1

W
∑

j ∈O(G)

(
qj/

(
1 − (P

path
sj /s2j )

))
23: ∇Q ← 1

W
∑

j ∈O(G)

(
(qj · ∇P

path
sj )/

(
sj ·

(
1 − (P

path
sj /s2j )

))
2

)
24: return Q , ∇Q
25: end procedure

We evaluate our approach on a set of random graphs and a distributed neural network application.

We generate small, medium and large sets of acyclic and cyclic random graphs with 10, 50 and 100

nodes using sdf3 [25]. To enable direct comparison of acyclic and cyclic graphs, we first generate

cyclic graphs and then remove backedges to create corresponding acyclic graphs. To assure that all

acyclic graphs are (weakly) connected, we remove any cyclic graphs that have multiple components

without backedges. Each graph set consists of 100 randomly generated graphs, where we add

self-loops to all actors to enforce their sequential execution while marking source and sink nodes

i.e. nodes with in and out degrees of zero as input and output actors, respectively. We set the WCET

of all actors to 10ms. For quality modeling, we assign a single weight to forward and backward

edges randomly in intervals [0.1,1] and [0.01,0.1], respectively.

For modeling of networks and network parameters, we set bandwidth of all links to 5Mbps.

Between each host pair in the network, we assume an average loss rate µ of 1% and a Gamma

distribution of network delays with shape parameter (α) and scale factor (β) randomly chosen

in intervals [2,3] and [1,1.5]ms, respectively, similar to the work in [4]. To enable quantitative

comparison of latency constraints, we introduce a constraint factor ρ. For a given ρ, we derive
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latency constraints on all input-output pairs (ai ,ao),∀i ∈ I,o ∈ O of a graph as

l ′(ai ,ao) = lmin(ai ,ao) + ρ × (lmax (ai ,ao) − lmin(ai ,ao)), (23)

where lmin(ai ,ao) and lmax (ai ,ao) are the minimal and maximal latencies between ai and ao when
all channels j in the graph have delay budgets that correspond to a pj of 0.001 and 0.999, respectively.
We define the period constraints similarly as τ ′ = τmin + ρ × (τmax − τmin), where τmin and τmax
are the minimal and maximal periods of the graph with channel pj of 0.001 and 0.999, respectively.

To verify our approach, we developed a simulation model for mapped and scheduled T-RADF

graphs in OMNET++ [27]. Token types for simulation of random graphs are 8-byte doubles, and

inputs were chosen as sinusoidal signals with the same offset and amplitude but different phase

offsets based on the input index selected from 10 possible options. Our simulation model has

support for three different replacement functions:

• Rstatic: replaces empty tokens with zeros

• Rlast: replaces empty tokens with the last received value

• Ravg: replaces with the running average of received values

Note that combinations of these replacement functions and inputs satisfies the assumptions made

earlier in Section 5.1. Through emulation of lossless execution of a graph, the simulation model

also supports calculating reference values, in addition to actual values, and, therefore, SNR.

In the following, we first describe how we verified our quality model, then optimization results

for random graphs. Finally, we demonstrate the effects of quality/latency-aware scheduling on a

distributed neural network application.

6.1 Fidelity ofQuality Model
To see how well estimated SNR bounds by our quality model track measured SNRs, we chose

a subset of 10 graphs from each set of 100 graphs and generated 100 random schedules with ρ
randomly chosen in the interval [0.1,0.9]. We generate a random schedule for a given ρ by randomly

partitioning latency budgets of input-output pairs across forward edges along each path between

the pair and use the resulting link budgets to determine the start times.

For optimization, we are concerned about the relative fidelity, but not absolute accuracy of

the quality model. To quantify the correlation between estimated and measured SNRs, we use

Spearman’s and Pearson’s correlation coefficients that measure monotonic and linear correlation,

respectively. As Table 3 shows, average correlation is very high and the model tracks SNR well

across cyclic and acyclic graphs of different sizes. Spearman coefficients are slightly higher than

Pearson’s. They only measure monotonicity of the relationship between estimated and measured

SNR, but this is what matters for optimization. Note that without feedback, SNR estimates for

acyclic graphs are generally more conservative, i.e. lower than for cyclic ones. Thus, estimation

errors are relatively higher.

6.2 Scheduling Optimizations
In the following, we discuss optimization results for random graphs, where we compare the

improvements in estimated and measured SNR with three different replacement policies for various

ρ.

6.2.1 Optimization Summary. Figure 6 shows the percentages of cyclic and acyclic graphs whose

average measured SNR under different replacement policies improve, stay constant and decrease

as result of optimization, for various graph sizes and ρ. In the majority of cases, measured SNR

improves and, in very few cases, optimization fails to find a better schedule and hence SNR does

not change. However, there are also cases where the optimization may find a better schedule,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: October 2019.



1:18 Mirzazad, et al.

Table 3. Correlation of estimated and measured SNRs.

type size

Spearman’s Pearson’s

Rstatic Ravg Rlast Rstatic Ravg Rlast

acyclic

s 0.853 0.928 0.945 0.861 0.904 0.93

m 0.908 0.914 0.95 0.898 0.911 0.944

l 0.882 0.901 0.939 0.885 0.906 0.948

cyclic

s 0.975 0.98 0.981 0.937 0.945 0.952

m 0.924 0.925 0.917 0.906 0.918 0.912

l 0.9 0.901 0.935 0.89 0.882 0.92
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Fig. 6. Breakdown of optimization results that improve, do not affect or decrease measured SNR vs. the
baseline.

but measured SNR decreases. This happens more frequently in cases with large ρ. With relaxed

latency constraints, the improvements that can be achieved by the optimization are small and

therefore a small error in model fidelity can cause the measured SNR to decrease. We believe that

an improved quality model that accounts for P jointsm and does not assume inputs to be comparable

(sin(k )[i] , sin(k ′)) can address this problem. We will explore more detailed quality models in future

work.

6.2.2 Optimization Results. Figure 7 further details the average ∆SNR achieved by optimizations

across various replacement policies. Results show that the average change in the measured SNR is

always larger than that of estimated SNR, which further indicates that conservative quality estimates
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provided by our analysis hold. As can be seen, optimization benefits smaller ρ more. With large

ρ, already with a uniform distribution, channels have pj ≈ 1, i.e. experience few losses and there

is little room for optimizations. Among the measured SNRs, for most values of ρ, all replacement

policies benefit equally from the optimization under decreasing ρ. However, for ρ = 0.25, Rlast

improves more than Rstatic and Ravg. This is due to the fact that Rlast depends on the previous values

to function well, and with small pj , it cannot provide a good estimate and optimization improves

its SNR by allowing it to function better.

To investigate the effects of graph size on ∆SNR, we show the average improvement in measured

SNR across three replacement policies for various graph sizes in Figure 8. As this figure shows,

in general, different graph sizes are very close to each other and therefore we can conclude that

graph size is not of much relevance. However, in case of small acyclic and medium cyclic graphs,

due to the larger number of ∆SNR < 0 cases with ρ = 0.75 and ρ = 1.0, improvement in SNR is

less compared to other graphs.

6.2.3 Optimization Runtime. Tomeasure optimization overhead, we collected the average execution

time of the trust-region constrained optimization for cyclic and acyclic graphs under various ρ on

Intel Core i7-920. As Figure 9 shows, execution time is larger for smaller ρ since finding the optimal
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Fig. 10. Partition/mapping of digit classification neural network.

schedule becomes harder under tight latency constraints. Furthermore, as expected, it takes more

time to schedule cyclic graphs compared to acyclic ones as they require multiple iterations.

6.3 Distributed Neural Net
To examine the effects of quality/latency-aware scheduling on a real application with non-linearities,

we developed a simulation model of a two-layer neural network for classification of handwritten

digits in theMNIST dataset [11] as a representative example of a typical image classification network

architecture. We base our model on the C++ implementation provided by [24]. We distribute this

neural network by mapping each layer to a different host and further partitioning the hidden

layer across eight hosts. Figure 10 shows the resulting T-RADF graph along with its mapping. In

this graph, a single input layer actor tiles the image consisting of 784 integers into 49 tokens of

16 integers each and sends the tokens to a hidden fully-connected (FC1) layer. Each FC1 actor

corresponds to 16 neurons and uses 49 tokens to produce 16 integers that are sent as single token.

A second fully-connected layer (FC2) combines the partial results, completes the inference and

assigns a label to the image. We compare the assigned labels with ground truth to measure the

accuracy. WCET of all FC1 and FC2 actors are assumed to be 1s. We account for the serialization

time of data by measuring it in the simulation (85ms) and assigning it as the input layer’s WCET.

For optimization, we approximate this graph as linear by attaching the sum of the neuron weights

of each partition to its incoming links and using a static replacement function for all actors. We

choose the NDD of all outgoing links of h0 to be a Gamma distribution with α = 2 and β = 1ms .
For the NDD of incoming links of h9, we use a Gamma distribution with α = 3 and β = 1.5ms .
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Note that these α and β represent the two extremes of the range used for experiments with random

graphs. For all links, we assume µ to be 1%.

To evaluate the quality/latency trade-off, we generate baseline and optimal schedules for the

graph under various latency constraints. Similar to Section 6.2, we employ a uniform latency

distribution as baseline. We simulate the resulting schedules for 1000 iterations. As shown in

Figure 11, at tight latency constraints, an optimized schedule can improve accuracy by up to

10%. However, as constraints are relaxed and there is less opportunity for optimization, schedules

becomes similar and saturate at 94% of the accuracy of the original implementation from [24].

Overall, this example shows that our approach can achieve significant improvements in realistic

applications even when they are non-linear.

7 SUMMARY, CONCLUSIONS AND FUTUREWORK
In this paper, we presented an approach for quality/latency-aware scheduling of distributed stream-

ing applications. To the best of our knowledge, this is the first work to address the problem of

quality-optimized scheduling of distributed dataflow models while providing real-time guarantees

over unbounded open networks. We formalized the execution of distributed streaming real-time

applications by adapting and extending existing dataflow models. To optimize the quality/latency

trade-off, we developed an analytical quality model and formulated scheduling as a numerical

optimization problem. Simulation of random graphs and a neural network show that our approach

can improve SNR by 50% on average and recognition accuracy by up to 10% over a baseline schedule.

We have released our scripts, simulation models and graphs in open-source form at [15].

Our current work is based on a number of simplifying assumptions. This includes homogeneous

graph and one-actor-per-host limitations. These restrict the set of applications, application-to-

network mappings and communication architectures that can be modeled and optimized using

our approach. As discussed in Section 5.1, the assumption of one actor per host can be satisfied

by statically scheduling multiple actors mapped to the same host into a super-actor used for our

analysis. This will, however, make super-actors generally non-homogeneous.We plan to add support

for direct analysis of non-homogeneous graphs with more complex communication patterns and

integrated mapping optimizations in future work. In the process, we plan to improve quality models

and optimization heuristics.

Our work currently performs a strictly static scheduling assuming per-link NDDs that are profiled

offline and independent. In non-stationary networks, delays can become correlated. This can be
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addressed in a real-world deployment by dynamically measuring NDDs and regenerating the

schedule at regular intervals. Similarly, statically computed schedules can be optimized at runtime

by dynamically adjusting timeouts and delay budgets in response to instantaneous variations in

network delays. We plan to develop a corresponding runtime system for deployment of T-RADF

models.
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