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ABSTRACT
With traditional cycle-accurate or instruction-set simula-
tions of processors often being too slow, host-compiled or
source-level software execution approaches have recently be-
come popular. Such high-level simulations can achieve or-
der of magnitude speedups, but approaches that can achieve
highly accurate characterization of both power and perfor-
mance metrics are lacking. In this paper, we propose a novel
host-compiled simulation approach that provides close to
cycle-accurate estimation of energy and timing metrics in
a retargetable manner, using flexible, architecture descrip-
tion language (ADL) based reference models. Our auto-
mated flow considers typical front- and back-end optimiza-
tions by working at the compiler-generated intermediate rep-
resentation (IR). Path-dependent execution effects are accu-
rately captured through pairwise characterization and back-
annotation of basic code blocks with all possible predeces-
sors. Results from applying our approach to PowerPC tar-
gets running various benchmark suites show that close to
native average speeds of 2000 MIPS at more than 98% tim-
ing and energy accuracy can be achieved.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development

Keywords
Power and performance modeling, Host-compiled simulation

1. INTRODUCTION
Software developers typically rely on executable models

for quick and accurate feedback on the performance and
power of their designs. Traditionally, cycle-accurate instruc-
tion set simulators (ISSs), micro-architectural or RTL/gate-
level descriptions have been used to perform performance
and power simulations of applications executing on a proces-
sor core. Their drawback is that they are either inaccurate
or slow, since they require the processor micro-architecture
either to be fully abstracted or to be modeled in detail.
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As an alternative to ISS-based models, high-level soft-
ware and processor models based on native, so-called host-
compiled or source-level software execution have recently
emerged. Such approaches model computation at the source
code level (typically in C-based form), which allows a purely
functional model to be natively compiled onto the host for
fastest possible execution. Timing and power information
is added by prior back-annotation of the source with esti-
mated target metrics. In complete host-compiled models,
annotated source code is then further wrapped into mod-
els of operating systems and processors that integrate into
standard transaction-level modeling (TLM) backplanes.

Previous host-compiled approaches have thus far mostly
focused on timing simulations. Furthermore, they are of-
ten tied to specific target architectures and limited in their
accuracy or speed of capturing basic path-dependent micro-
architectural execution effects. The main contribution of
this paper is to propose a fast and accurate host-compiled
simulation approach for automated and retargetable model-
ing of both performance and power consumption. Our flow
is built by annotating the compiler generated intermediate
representation (IR) of the application source code with es-
timates obtained from reference timing and energy models.
The flow is fully automated and easily retargetable. We
leverage existing, open-source architecture description lan-
guage (ADL) frameworks for cycle-accurate timing and en-
ergy characterization across a wide range of targets. Work-
ing at the IR level allows us to accurately trace execution
paths during simulation, where we establish a mapping from
the binary control flow graph (CFG) to the IR such that
compiler backend optimizations are fully considered.

We further improve accuracy over existing approaches by
relying on a pairwise characterization of each basic code
block with all possible predecessors, both within and across
the function hierarchy. This allows us to accurately capture
path-, state- and pipeline-dependent effects that can sig-
nificantly influence the dynamic execution behavior of each
block of code. Automated one-time back-annotation of code
is fast (on the order of 1-2 minutes), while resulting mod-
els are shown to simulate at close to source-level speeds (of
more than 2000 MIPS on average) with near cycle accuracy
(less than 0.8% average timing and energy error).

The rest of the paper is organized as follows: After an
overview of related work and the back-annotation flow in
the following sections, details of the timing and energy back
annotation process will be described in Section 2. Section 3
then discusses the results of our experiments and Section 4
presents the conclusions.



1.1 Related Work
There is a range of approaches that aim to annotate timing

information obtained from a target model back into appli-
cation code either directly at the source [26,29,32] or at the
intermediate representation [1, 14, 25, 30]. A problem with
working at the source level is that it can result in inherent
inaccuracies in the mapping between the target and source
code under aggressive control flow optimizations. To resolve
ambiguities, most approaches either fall back to [29] or es-
tablish a separate path-tracking [26] via an IR-level simu-
lation model. We avoid these issues by working at the IR
directly. Nevertheless, in the presence of aggressive com-
piler optimizations, even IR and binary control flows do not
always match. Existing approaches either disable optimiza-
tions and rely on debug information [30], or obtain high-level
estimates directly from the IR [14] or source code [4,6]. We
have found debug information of optimized code to be unre-
liable. We therefore implement an approach that combines
a flow graph matching algorithm with debug information as
fall back only when needed. A similar graph matching flow
targeted at binary-to-source mapping is described in [19].

For accuracy, we perform back-annotation using cycle-
accurate simulation at the level of actual target binaries.
Other binary-based approaches instead rely on static code
analysis [25,26,29,30], which is often overly conservative and
tied to a specific backend target. By contrast, our approach
is designed to be accurate and fully retargetable. Further-
more, since off-line characterization is only performed once
per static block pair, it is fast while being able to take inter
basic block timing into account. The work in [17, 22] relies
on a similar approach for path-dependent characterization
of basic block timing. However, they do not include power
estimation and are applied to relatively slow instruction-
set simulation or abstract pipeline models, neither of which
guarantee accurate characterization of all blocks.

To further capture dynamic effects, several approaches
include dedicated simulation models of micro-architecture
features such as caches or branch predictors [25, 30] or of
complete OS and processor models that include effects of
task interleavings or other exceptions [12,24]. Furthermore,
there are hybrid models that toggle between host-compiled
and ISS-based execution [15, 20]. Our approach is orthogo-
nal to and supports integration with such dynamic models.

For power estimation, popular approaches are to leverage
high-level state-based models, to develop macro models for
micro-architectural functional blocks [8, 27], to use detailed
simulation-based modeling frameworks [5,16], or to support
estimation at a range of abstraction [21]. Simulation-based
methods utilize activity information gathered from cycle ac-
curate performance simulators to estimate power consump-
tion. Tiwari et al. [28] present an instruction level power
model that also takes into account dynamic inter-instruction
effects like pipeline stalls. However, their methodology is
not portable in that it requires detailed profiling of the in-
struction set of the target. The authors in [13] present an
approach wherein phases are identified in the program based
on dynamic power consumption. Detailed power character-
ization of a representative slice from each phase is used to
build a fast power simulation model.

At the source or intermediate levels, existing power esti-
mation approaches employ coarse-grain models that assume
a constant or statistical energy consumption model at the
granularity of complete instructions or source-level opera-
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Figure 1: Host-compiled back-annotation flow [10].

tions [2,3,7]. They thus largely focus on predicting the exe-
cution time correctly to arrive at an estimate of overall power
consumed. By contrast, we leverage existing low-level ref-
erence models that operate at detailed micro-architectural
granularity and make no such assumptions. By following
a pairwise block characterization approach, we are able to
maintain the accuracy of such models while achieving fast
estimation and simulation times.

An overview of our basic flow for retargetable power and
performance back-annotation was first introduced in [10].
However, in earlier work, the flow was not automated, com-
piler optimizations were not fully supported and no details
about the pairwise block characterization were presented. In
this paper, we extend the original concept with a binary-to-
IR mapping algorithm and accurate block characterization
to provide a fully automated flow that supports complex
optimized code.

1.2 Flow Overview
Figure 1 shows our flow for automatic timing and energy

back-annotation of host-compiled models, accompanied by
representative code snippets at various stages. The applica-
tion C code is passed through a generic cross-compiler front
end (gcc in our case) to produce an IR, which is then fur-
ther massaged back into compileable C form [11]. Working
at the IR allows typical compiler front-end optimizations to
be taken into account with little or no penalty in execution
speed. For debugging, IR code can be annotated with source
line information and thus linked back to the original applica-
tion code. Moreover, the IR allows us to accurately observe
effects of target-dependent behavior, such as overflows in
the original C code. For this, the IR-to-C conversion script
maps all variables and constants into a host data type of
target-equivalent size and alignment. Furthermore, the IR
inherently provides a close representation of the final con-
trol flow graph (CFG) of the target code and hence is able
to accurately reflect all data-dependent execution behavior.

During following back annotation, the IR’s CFG is then
further augmented with timing and energy information. The
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Figure 2: Mapping of IR to binary control flows.

IR is first passed to the generic cross-compiler backend of
the chosen target processor (again, gcc in our case). The
generated binary is then analyzed to extract its CFG and
establish the mapping between basic blocks in the IR and
binary. This mapping is needed to accurately determine an-
notation points in the IR. Basic blocks (BBs) in the binary
are then characterized for timing and energy consumption.
This is done by executing them pairwise on a retargetable,
cycle-accurate ISS, which is automatically generated from
an open-source ADL infrastructure [9]. Execution statis-
tics from the simulation are further fed to a retargetable,
McPAT-based reference power model of the chosen proces-
sor [16]. The resulting timing and energy estimates are then
back annotated into the compileable IR, aided by the map-
ping. This final step creates the host-compiled model.

2. BACK ANNOTATION
In the following, we describe the back annotation process

at the core of our flow. As illustrated in Figure 1, the back
annotator consists of three main steps: building the map-
ping table, extracting and characterizing basic blocks and
annotating characterizations into the compileable IR.

2.1 Mapping
The first step in constructing a binary-IR mapping table

is to build the CFGs of the compileable IR and the binary
generated from it. In the IR, basic blocks are delineated
by identifying their starting and ending line numbers in the
code. Building the CFG for the binary follows a similar pro-
cess, but it requires identifying all assembly instructions that
can cause control flow changes. This invariably introduces a
dependence on the target instruction set in the annotation
flow. This can be mitigated, however, by automatically ex-
tracting the knowledge of control flow change instructions
from the ADL description of the processor, which we plan
to address in future work. Currently, we employ a separate
template for pattern matching and recognition of control
flow instructions.

After constructing the CFGs, a match of both graphs
has to be established. Due to optimizations in the com-
piler backend, however, changes in the basic block structure
of the code can occur and graphs will not match exactly.
Typical mismatches between IR and binary CFGs are il-
lustrated in Figure 2. In general, all changes can be re-
duced to nodes being added or removed on either side of
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Figure 3: Flow value computation example.

the graph (Figure 2(a)) when instructions are percolated
through the control flow hierarchy by the compiler. Instruc-
tions can be pushed down into successors, which can lead
to additional blocks being introduced on one or more binary
branch paths (Figure 2(b)). Conversely, blocks will disap-
pear from the binary if all their instructions are determined
to be path independent and subsequently are moved up into
each of the block’s predecessors (Figure 2(a) and (c)). This
includes cases where complete if-then-else structures are re-
placed with predicated execution using conditional instruc-
tions in straight-line code (Figure 2(d)).

A valid graph mapping needs to be established in the pres-
ence of such variations. The gcc suite debugger, GDB, was
an early candidate for extracting a mapping of binary ad-
dresses to IR code lines. Since there is generally a one-to-
many mapping between blocks under optimizations, how-
ever, GDB’s mapping information alone is not sufficient. We
therefore use a heuristic subgraph matching algorithm that
only falls back on debug information when multiple equally
likely matches are possible (e.g. as is the case when trying
to match the two branches of simple if-then-else structures,
which can not be identified from the graph structure alone).

We know that unique mappings will exist and will have
to adhere to the overall control flow of the application. As
such, we perform a synchronized depth-first traversal of both
CFGs and identify legal matches between pairs of blocks. In
the context of back-annotation, a key criterion for a match
to be valid is that the number of execution paths traversed
and passing through both nodes during program execution
has to be equal. We therefore identify legal matches based
on a control flow representation using both loop and branch
nesting levels.

For the latter, we introduce a flow value associated with
each basic block that describes the branching structure of
the CFGs, as shown in Figure 3 (extracted from the ADPCM
benchmark used in our experiments). The flow value of a
basic block is equal to the sum of all its incoming flows,
which in turn are equally divided among all outgoing edges.
Root nodes of a CFG have a flow value of 1. For mapping



Algorithm 1 Flow value computation.

1: function ComputeFlow
2: Flow(EntryBB) = 1
3: Put(Succ(EntryBB), Queue)
4: while |Queue| 6= 0 do
5: BB = Get(Queue)
6: for all Si ∈ Succ(BB) do
7: if Si ∈ Ancestors(BB) then
8: DeleteEdge(Si ← BB)
9: end if

10: end for
11: for all Pi ∈ Pred(BB) do

12: Flow(BB)+ = Flow(Pi)
|Succ(Pi)|

13: end for
14: Put(Succ(BB), Queue)
15: end while
16: end function

purposes, only nodes with equal flow numbers in both graphs
will be considered as potential matches. For example, in
Figure 3, node G in the IR has a flow value of 0.75, which
does not match any block in the binary. Algorithm 1 shows
the breadth-first traversal we use to calculate the flow value
across an entire CFG. Note that loop nesting levels for each
node are computed separately. As such, backward edges are
considered in the context of loop nests and ignored for the
purpose of flow value computation.

After recording flow and loop nesting level information, we
apply these as constraints for establishing candidate matches
between pairs of basic blocks during actual binary-to-IR
mapping (Algorithm 2). Starting from the roots of each
function, basic blocks are matched by recursively evaluating
all possible successor pairings and recording the one(s) with
the minimum cost. Each potential match is thereby associ-
ated with a cost that is the sum of unmatched blocks in the
two subgraphs rooted at each block. A pair of basic blocks
will be compatible only if both flow and loop nest levels
are identical. Non-comparable pairs will be associated with
an infinite matching cost. The algorithm uses and returns
a dictionary that records all compatible least-cost matches
found between any pair of blocks.

Given a pair of basic blocks to map, the algorithm first
checks for compatibility and whether the pair has already
been matched. In the latter case, the previously recorded
cost is returned. During the comparison of a pair of blocks,
the algorithm then enumerates and evaluates the cost of all
possible mappings between successors of each block. This in-
cludes cases where a successor node is skipped and remains
unmatched. In each iteration, the algorithm picks successor
subsets S to skip out of the powerset P(Succ(BB)), i.e. out
of the set of all possible subsets of successors (which includes
the empty set). Blocks in S are then subsumed by pulling
up their successors. A new successor set SS is constructed
in which each chosen successor block is replaced with its
own successor set. A LocalCost thereby represents the total
number of skipped blocks in either of the two sets. If the
cardinality of resulting successor sets is the same, the blocks
contained in those sets are considered for further matching.
All possible permutations of one-to-one correspondences m
between the two sets are evaluated. For each successor map-
ping m, its cost is recursively computed as the sum of the Lo-
calCost and the costs of all successor pair matches. Finally,

Algorithm 2 Binary-to-IR mapping.

1: function Mapping(BB1, BB2)
2: if Flow(BB1) 6= Flow(BB2)
3: or NestingLevel(BB1) 6= NestingLevel(BB2) then
4: return ∞
5: end if
6: if (BB1, BB2) ∈MatchingDict then
7: return MatchingDict(BB1, BB2)
8: end if
9: Mincost =∞

10: S1 = Succ(BB1)
11: S2 = Succ(BB2)
12: for all Si ∈ P(S1) do
13: for all Sj ∈ P(S2) do
14: LocalCost = |Si ∪ Sj |
15: SS1 = (S1 − Si) ∪

⋃
s∈Si

Succ(s)

16: SS2 = (S2 − Sj) ∪
⋃

s∈Sj
Succ(s)

17: if |SS1| == |SS2| then
18: for all bijections mk : SS1 → SS2 do
19: Cost = 0
20: for all BBl ∈ SS1 do
21: Cost+ =
22: Mapping(BBl,mk(BBl))
23: end for
24: Mincost =
25: min(Mincost, Cost + LocalCost)
26: end for
27: end if
28: end for
29: end for
30: MatchingDict(BB1, BB2)←Mincost
31: return Mincost
32: end function

the minimal matching cost among all the possible mappings
of all possible successor skips will be recorded as the match-
ing cost of the current basic block pair.

With the use of a dictionary to maintain already matched
block pairs, no pair is visited more than once. Hence, algo-
rithm complexity is O(MN) in the number of nodes M and
N in each graph. The final mapping of binary to IR blocks is
established by the least cost match recorded for each binary
block in the result dictionary. Note that the dictionary may
contain more than one match with equal minimum cost. In
these cases, a post-processing that uses debugging informa-
tion to resolve ambiguities is applied. Addresses of instruc-
tions in the binary block are successively queried for source
line information until a match with a candidate IR block is
found. In our experiments, our mapping heuristic returned
100% accurate matches for all test cases.

2.2 Basic Block Characterization
The second step in the back annotation process is the

characterization of block-specific target metrics. Accurate
characterization is complicated by the fact that the timing
and energy consumption of a basic block can be significantly
affected by pipeline effects such as stalls, which depend on
the state of the processor at the start of execution of the
block. In other words, in a real execution flow, the processor
state at the entry point of a basic block, and hence the timing
and energy consumption for the whole block is determined
by code that has previously executed (Figure 4).
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To approximate this effect, we characterize each block
through pairwise executions with all of its possible prede-
cessors. Such a two-level approximation of the actual path
history represents a tradeoff between accuracy and charac-
terization complexity. As results will show, a two-level char-
acterization incurs only a slight accuracy loss in a few cases.

The presence of function calls in a basic block presents
additional considerations. One option is to simply remove
them while characterizing the caller’s basic block. The func-
tion itself would be characterized, for all its basic blocks, in
isolation. However, in the same way as regular blocks, dur-
ing real execution the caller and callee can influence each
other’s timing. We illustrate this with the help of a small
example: Figure 5 shows a CFG snippet for a hypothet-
ical application example. Consider the execution sequence
A,B,D, F,G,B,C. The total execution time along this path
is given by:

TPath = TA + TB 1|A + TD|B 1 + TF |D +

TG|F + TB 2|G + TC|B 2,

where Ti|j denotes the execution time of basic block i given
that its immediate predecessor was block j. The equation
shows that timing-wise, B is divided into smaller sub-blocks
at the point of the function call to f2(), where the caller
and callee’s timings TD|B 1 and TB 2|G are influenced by
each other. Specifically, the processor state upon entry into
a function depends on where it is called from. Similarly,
state upon return to the callee depends on the last executed
block in the called function. To capture this interdepen-
dencies, caller and callee are characterized in conjunction
with each other. In our flow, blocks are split into sub-blocks
at the point of each function call. A function’s root basic
block is characterized for each point of call, by pairing it
up successively with all preceding sub-blocks. Likewise, the
sub-block following a function call is characterized with all
of the callee’s exit blocks containing an implicit or explicit
return statement.

2.2.1 Pairwise Execution
Each basic block pair is characterized by executing it on an

ISS to collect cycle counts and to feed the resulting execution
statistics to McPAT for energy estimation. As mentioned
above, a given basic block has to be characterized as many
times as the number of blocks that can precede it in all
possible execution flows. Notably, for a basic block with
function calls, each constituent sub-block is paired up with
its predecessors and individually characterized. Sub-block
timings are aggregated to get the overall timing of the block.

Before executing a basic block pair, the processor state is
properly initialized to prevent exceptions due to illegal op-
erations, such as divide by 0. The initialization is extracted
from the processor state after execution of the predeces-
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sor’s predecessor of the basic block being characterized. We
record such state information (register and memory values)
after execution of each pair. This then creates a dependency
between execution of different block pairs. A scoreboarding
system has been implemented to track such dependencies,
where dependent executions are only enabled upon the exe-
cution of a suitable block pair.

Performing pairwise execution of basic blocks requires that
conditional branches at the end of the predecessor, if any, are
steered to the other block in the pair. A similar requirement
exists for basic block pairs spanning a return from a func-
tion. We therefore introduce three non-architected registers
into the processor’s ADL description to implement steering
of branch during pairwise block characterization:

Predecessor End Address (PEA) The address of the instruc-
tion for which to force branch direction, if at all.

Branch Direction (BDIR) Specifies if forcing of branch di-
rections is enabled and if so, in which direction (taken
or not taken). For a particular basic block pair to
force, its value is determined by comparing the branch
target (if any) of the predecessor with the start address
of the given successor.

Correct Return Address (CRA) If the predecessor in a ba-
sic block pair ends with a function return, then this
register points to the correct instruction to return to.

The ADL description of conditional branch and return in-
structions is modified so that on encountering the PEA-
specified instruction, BDIR and CRA are used to guide the
PC to the address it should point to next.

2.2.2 Timing Characterization
To calculate the execution time of a basic block for a cer-

tain predecessor, the detailed trace generated from its pair-
wise ISS execution is analyzed (Figure 6). We rely on the
difference in the fetch time instants of the first and last in-
structions in a characterized basic block to determine its
execution time. Given a sequence of overlapping executions
of successive blocks, annotating fetch delays is equivalent
to recording commit times. Any stall inside the processor
pipeline will propagate to successive instructions and even-
tually manifest itself both as delay in the stalled instruc-
tion’s commit time as well as an equivalent delay in the
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Figure 6: Inter-block timing characterization.

fetch time of a following instruction. For example, as shown
in Figure 6(a), the stalls in the execution stages and hence
commit times for instructions 3, 4 and 5 are propagated to

Table 1: Energy characterization statistics.

Overall Statistics total cycles

Instruction Statistics

total instructions
integer instructions
branch instructions

branch mispredictions
load instructions
store instructions

committed instructions
committed integer instructions

function calls
context switches

Operation Statistics

instruction window reads
instruction window writes
integer register file writes
integer register file reads

integer ALU accesses
multiplier accesses
memory accesses

memory reads
memory writes

the fetching stages of instruction 4, 5 and 6, respectively. As
such, they will be included in the execution time of 7 cycles
annotated to basic block Y under predecessor X. In the
process, both intra- and inter-block dependencies are accu-
rately accounted for. When accumulating execution delays
during simulation, this setup captures all delays associated
with instructions in blocks X and Y , including the single
stall between commits of instructions from both blocks.

If any stall occurs between fetches of different blocks, the
execution time needs to be further adjusted to account for
the gap with respect to the predecessor’s end of execution.
This effect is illustrated in the example of Figure 6(b). The
end of basic block X from Figure 6(a) has moved from in-
struction 3 to instruction 4. As a result, the fetching stall in
instruction 5 will appear between the new basic block pair
(M,N). In this case, the stall penalty for the fetching stage
of the first instruction in basic block N is simply added to
N ’s characterized execution time.

By contrast, in multi-issue micro-architectures a situation
may occur where fetch times of successive blocks start over-
lapping. Figure 6(c) shows an example of such a case. The
pair (P,Q) overlaps on the last instruction of P . This neces-
sitates a reduction in Q’s characterized time by the amount
of the overlap. In case of overlapping fetch times between
the first instruction of a block and the last instruction of its
predecessor, the amount of overlap is therefore subtracted
from the execution time of the characterized block.

Overall, intra- and inter-block pipeline effects are accu-
rately accounted for. Note that our pairwise characteriza-
tion scheme is also able to accurately handle effects of static
branch predictors. In static predictors, either the branch
target or the fall-through block will always suffer a mispre-
diction penalty at the beginning of its execution. This is
similar to other basic blocks suffering a stall in their first
instructions. Dynamic branch predictors are not accurately
characterized using our approach. To generally capture dy-
namic effects, our back-annotated models can be augmented
with dynamic cache and branch predictor simulation mod-
els from literature. Such extensions with existing work are,
however, outside of the scope of this paper.



wait(delay[bb_4]);
  cur_bb = bb_4;
  ivtmp_64 = 
               ivtmp_64 + 1;
  if (ivtmp_64 != 20) {

wait(delay[bb_45]);
    cur_bb = bb_45;
    goto bb_5;
  } else
    goto bb_6;

bb_4

bb_5

bb_6

……….
……….
……….

……….
ivtmp_64 = 0;
……….

(a) IR

Figure 7: Annotation of bridging blocks.

2.2.3 Energy Characterization
McPAT, the power estimation tool used in our flow, re-

quires execution statistics as shown in Table 1. These statis-
tics are extracted from the detailed trace emitted during the
ISS execution. When characterizing a selected block with
any of its predecessor, corresponding instruction and oper-
ation statistics are collected only for instructions contained
in the characterized block itself. Combining these statistics
with the block’s characterized execution timing and cycles,
the power consumption output from McPAT is then con-
verted into an energy consumption figure for the block pair.

Compared to timing, power modeling poses additional
challenges. Switching activity and hence power consump-
tion of a code block will generally be data (input) depen-
dent. We currently annotate a single energy consumption
figure (based on default McPAT activity factors) per pair of
basic blocks, leading to small residual errors. In future work,
we plan to develop an input-dependent characterization of
the per-block energy consumption based on the actual data
flowing through the block during simulated execution.

2.3 Back Annotation
The metrics gathered during the characterization step are

recorded in the mapping table. As the last step in our flow,
the mapping table is used for directing the annotation of
target metrics into the compileable IR at the correct points.
The annotations into the compileable IR are in the form
of time and energy counters, a global array containing de-
lay and energy estimates for all possible basic block pairs,
and corresponding table lookups in each block to increment
counters based on the ID of the current block and its run-
time predecessor. Additional conditional code is inserted for
tracking of sub-blocks. A logical representation of sample
annotated code is shown in Figure 1.

Unmatched blocks remaining in the mapping table after
applying the algorithm from Section 2.1 may require spe-
cial considerations. Accounting for blocks missing in the

Table 2: Benchmark summary.

Benchmark Suite Mods. BBs Sim. instr.

SHA (Sm)
Security

Disabled
50

14,674,926
SHA (Lg) tail-call 153,067,895
ADPCM (Sm)

Telecom - 40
36,658,548

ADPCM (Lg) 724,729,999
CRC32 (Sm)

Telecom
Disable

7
13,688,752

CRC32 (Lg) inlining 266,112,122
Sieve - - 17 12,284,657

binary is as simple as not annotating the unmatched IR
block. However, in case of additional basic blocks in the
binary, the annotation of the timing data for such a bridg-
ing block in the IR is done in the corresponding branch of
the if-statement of its predecessor. Figure 7 illustrates this
adjustment to the annotation process. In this case, basic
block bb 4-5, which exists in the binary, has no match in
the intermediate representation. Its timing and energy in-
formation therefore has to be back-annotated onto the bb 4
to bb 5 edge in the IR. This is achieved by inserting cor-
responding annotations directly into the associated control
flow statement of the source block bb 4.

3. EXPERIMENTS AND RESULTS
We have implemented our automated back-annotation flow

in Python using the uADL ISS [9] and McPAT [16] as timing
and energy references, respectively. Our retargetable back-
annotation (RBA) tool is available for download at [23].

To demonstrate the automation of our flow for host com-
piled model development, we applied it to several standard
benchmarks running on two generic PowerPC based tar-
gets. Back annotations and simulations were performed on
a quad-core Intel i7 workstation running at 2.6 GHz.

We selected three benchmarks from the MiBench suite
with both small and large data sets [18] as well as a custom
application (Eratosthenes’ Sieve) for validating our flow.
The latter calculates prime numbers in the range 0 to 500,000.
Since back-annotation requires source code to be available,
in the presence of library calls, we included library code in
the characterization. If library sources are not available,
e.g. in case of floating-point emulation on our PowerPC tar-
gets, back-annotation needs to resort to static or statistical
estimation of library timing [31]. Since this can lead to ad-
ditional inaccuracies on top of evaluating the base accuracy
of our flow, we excluded such benchmarks in this paper.
Benchmarks were further modified to validate proper func-
tion call characterization.

Table 2 shows a summary of the benchmarks and the mod-
ification made to the original code or compilation process.
All benchmarks were changed to accept constant array ver-
sions of the inputs that replace the file I/O in the original
code. Benchmarks were cross-compiled to the IR and bi-
nary levels using powerpc-elf-gcc with the ‘O2’ optimization
level. C conversion and back-annotation of the IR code was
performed using our automated scripts. Finally, resulting
host-compiled simulation models were executed under both
small and large input sets provided in the MiBench suite.

The first target we evaluated is an in-order, e200 z4-like
dual-issue core with no cache, MMU, floating point unit or
dynamic branch predictor. The other target is an e200 z6-
like single-issue core with a longer pipeline. A gcc-4.4.5
cross-compiler was used to generate code for both targets.



Table 3: Runtime Comparison

z4-like core z6-like core
Host-Compiled ISS Host-Compiled ISS

Benchm. BA Sim. Total Sim. McPAT Total BA Sim. Total Sim. McPAT Total

SHA (Sm)
02:42.7

9ms 02:42.7 00:15.2 1.72s 00:17.0
02:49.2

11ms 02:49.2 00:17.5 1.67s 00:19.2
SHA (Lg) 44ms 02:42.7 02:37.0 1.77s 02:38.8 44ms 02:49.2 03:04.9 1.79s 03:06.6
CRC (Sm)

00:31.2
9ms 00:31.2 00:17.2 1.69s 00:18.8

00:32.0
11ms 00:32.0 00:18.6 1.67s 00:20.3

CRC (Lg) 87ms 00:31.2 06:27.1 1.73s 06:28.8 86ms 00:32.1 06:10.3 1.79s 06:12.0
ADP. (Sm)

02:04.9
24ms 02:04.9 00:38.3 1.82s 00:40.1

02:02.1
24ms 02:02.1 00:42.9 1.67s 00:44.5

ADP. (Lg) 317ms 02:05.2 12:27.4 1.84s 12:29.2 323ms 02:02.4 13:29.1 1.75s 13:30.9
Sieve 00:47.0 13ms 00:47.0 00:14.9 1.67s 00:16.5 00:47.3 12ms 00:47.4 00:15.3 1.70s 00:17.0
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Figure 8: Simulation speed.

3.1 Speed Results
Table 3 shows runtimes of the back-annotation (BA) pro-

cess for generation of final host-compiled simulation mod-
els from the original C source code, which includes cross-
compilation, IR conversion and timing and energy charac-
terization. Furthermore, simulation times of host-compiled
models are compared against ISS and McPAT runtimes in a
traditional simulation setup. As results show, for the small-
est data sets and short simulation runs, the benefits of faster
host-compiled simulations do not outweigh the overhead in-
troduced by the extra back-annotation process. However,
as input data sets and simulation lengths grow, combined
back-annotation and HC runtimes increase at a much slower
rate than total ISS plus McPAT times. Furthermore, back-
annotation is a one-time effort. Once generated, resulting
host-compiled models can be repeatedly resimulated under
varying input scenarios.

Figure 8 shows the simulation speeds of the host-compiled
(HC) models as compared to that of source and IR level sim-
ulations. By contrast, the ISS runs at about 0.8-1.0 MIPS.
As is evident, there is no degradation in simulation speed by
working with the IR instead of the source. On an average,
the host-compiled models are nearly 2100 times faster than
the ISS, while being marginally slower than the IR.

3.2 Timing and Energy Results
Figure 9 and 10 compare the accuracy of timing and en-

ergy results obtained from the host-compiled (HC) models
against cycle-accurate simulations of complete application
runs executed on the respective ISS+McPAT reference mod-
els. To verify that our pairwise characterization approach
indeed adds significant accuracy, we replicated modified ex-
periments aimed at comparing our results against existing

approaches in literature that rely on static timing or en-
ergy characterizations only. We ran experiments for both
z4 and z6 cores in which each block was annotated with a
single value only. In a first setup, basic blocks were char-
acterized in isolation without any predecessor dependencies
being considered at all (Non). Other experiments use the
best-case (BC) or worst-case (WC) timing and energy values
obtained over all predecessors. The latter resemble classical
approaches that are based on static best-case and worst-case
characterization. Note, however, that our simulation-based
approach is likely to still remain less conservative and hence
more accurate than true best and worst analysis.

Resulting timing and energy errors are summarized in Ta-
bles 4 through 7. For the z4 target, the maximum estimation
errors in timing and energy are 0.6% and 1.0%, respectively,
while average errors are 0.2% and 0.3%. On the z6 target,
our flow shows maximum timing and energy errors of 2.2%
and 0.8% with an average error of 0.8% and 0.4%, respec-
tively. Residual errors, especially for the z6-ADPCM combi-
nation, are due to dependencies spanning more than two ba-
sic blocks, which are not captured by our flow. Static char-
acterizations following traditional approaches lead to energy
errors between 10% and 20%, and timing errors ranging from
20% up to 50%. Overall, results confirm that pairwise char-
acterization represents a good tradeoff between significantly
improved accuracy and low back-annotation runtime.

4. SUMMARY AND CONCLUSIONS
In this paper, we presented a framework for combined,

fast and accurate power (energy) and performance estima-
tion based on a host-compiled simulation approach. Con-
cerns of compiler optimizations are addressed by working at
the IR level. The approach is fully retargetable by virtue of
utilizing a standard ADL-based backend tool chain for tim-
ing and power estimation. Our flow and its subsequent au-
tomation was evaluated on several industry-standard bench-
marks executing on PowerPC targets. Results show order
of magnitude speedups yet high accuracy in simulation for
the host-compiled approach as compared to a cycle accu-
rate ISS. Utilizing path-dependent, pairwise and simulation-
based characterization at the basic block level, accuracy is
significantly improved compared to approaches that anno-
tate a single metric per block. Overall, simulation speed
remains close to native execution at near cycle accuracy.

Future work will be concerned with further automation
of the approach, including development of data-dependent
power models, integration with existing cache, OS and pro-
cessor modeling approaches, and evaluation on a wider range
of target platforms, micro-architectures and benchmarks.
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Figure 9: Host-compiled timing accuracy.
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