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Abstract—Due to ever increasing design complexities and
continued technology scaling, reliability concerns due to single
event upsets have become a key metric in electronic system
design. During early design stages, soft error rates are usually
modeled by estimating the Architectural Vulnerability Factor
(AVF), which can be obtained by identifying the occupancy
of Architecturally Correct Execution (ACE) bits. Previous ap-
proaches for AVF computation either rely on time-consuming
cycle-accurate simulation of detailed micro-architectural struc-
tures or linear regression and other machine learning based
estimation. However, accurate AVF estimation methodologies that
can both capture the dynamic execution behavior and achieve fast
simulation speed are lacking.

In this paper, we propose a novel host-compiled simulation
approach for AVF estimation with an emphasis on data storage
structures. Our flow utilizes the retargetable back annotation
approach to automatically annotate source-level simulation code
with basic block reliability metrics. Based on producer-consumer
dependency pair analysis, target architectural occupancy is simu-
lated on the host and hardware components accesses are captured
online to dynamically estimate AVF based on the occupancy
statistics of micro-architectural structures.

Results of applying our model for estimation register file AVF
on PowerPC targets running various benchmark suites show that
an AVF estimation accuracy of more than 96% can be achieved
while running simulations at close to source-level speeds in excess
of 700 MIPS.

I. INTRODUCTION

With continued shrinking of feature sizes, reliability is
quickly becoming one of the main issues in the design and op-
eration of both embedded as well as general-purpose computer
systems. Reliability of electronic systems against recoverable
failures can be described using mean-time-between-failure
(MTBF) or failures-in-time (FIT). The accurate estimation
of these metrics is, however, challenging. By definition, this
requires detailed and exhaustive long-term testing or complex
fault injection experiments, which are often not feasible for ar-
chitectural design space exploration, especially at early design
stages.

In practice, designers and researchers use vulnerability met-
rics to predict and evaluate a certain design’s reliability against
soft errors from a probability-based perspective. In general, a
vulnerability factor indicates the probability that an internal
fault in a device structure will result in an externally visible
fault [1]. Nevertheless, the estimation of such metrics still
requires intensive, detailed simulation and profiling in order
to accurately track micro-architectural states. Many previous

efforts have been aimed at amortizing time-consuming cycle-
accurate simulations for exploration across a wider range of
the design space. Most approaches feed selected execution
information into analytical, machine learning or regression
based models for further prediction and estimation.

With ever evolving software content and growing dynamism
and complexity of hardware systems, however, comprehen-
sive simulations remain the primary tool for vulnerability
estimation. At the same time, detailed mirco-architectural
simulations quickly become prohibitive for all but the simplest
architectures or workloads. As such, there is tremendous need
for fast yet accurate estimation of architectural vulnerabilities
at early design stages.

In this paper, we propose a novel approach for abstract,
high-level reliability modeling using host-compiled simula-
tion. In this approach, soft error vulnerability estimation is
performed directly at the source level. In doing so, source
code is back-annotated with information obtained from micro-
architecture profiling to accurately track architectural occu-
pancy and vulnerability. Back-annotated simulation models
can in turn be easily integrated into transaction-level modeling
(TLM) backplanes for co-simulation with other system com-
ponents in order to provide a fast, reliability-aware prototyping
infrastructure.

The rest of the paper is organized as follows: after an
overview of background and related work in the following
sections, details of the host-compiled estimation methodology
will be described in Section III. Section IV then discusses
the results of our experiments, and Section V presents the
summary and conclusions.

A. Architectural Vulnerability Factor

The Architectural Vulnerability Factor (AVF) was intro-
duced as a metric for measuring architecture-level reliabil-
ity [1]. Mukherjee et al. define AVF as the probability of an
error occurring in particular architecture components resulting
in explicit execution errors. By its definition, AVF can be
obtained through profiling of the occupancy of so-called
Architecturally Correct Execution (ACE) bits, for which any
error will manifest itself as a fault at the program output.

Two extreme examples are branch predictors and program
counters, with AVFs of 0% and 100%, respectively. Most other
structures will have an AVF that is in between these two
extremes. Typically, data storage structures, such as register
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Fig. 1. Retargetable back-annotation for source-level simulation [8].

files and caches, will dominate usage and area occupancy. As
such, they often contribute the most to the overall on-chip
AVF. Impacted by both software and hardware, the AVF of
data storage structures is therefore one of the key metrics for
early assessment of soft error reliability.

B. Host-Compiled Modeling

Our work is focused on providing a light-weighted sim-
ulation infrastructure for AVF profiling and estimation with
emphasis on data storage component vulnerability. Based on
the observation that for any application binary, the correspond-
ing architectural occupancy behavior can be replicated at the
source code level, we adapt and extend existing techniques
from the host-compiled simulation domain as a basis for
developing our fast and accurate AVF estimation framework.

Host-compiled simulation based on native, source-level soft-
ware execution has recently been introduced as an alternative
to traditional instruction-set simulation (ISS). Such approaches
model computation at the source code level (typically in C-
based form), which allows a purely functional model to be na-
tively compiled onto the host for fastest possible execution [2].
Target execution information is added by prior back-annotation
of the source with estimated target metrics [3], [4], [5], [6],
[7]. In complete host-compiled models, annotated source code
is then further wrapped into models of operating systems
and processors that integrate into standard TLM backplanes.
However, none of the existing host-compiled or source-level
simulation approaches has considered reliability thus far.

The AVF simulation framework in this paper is based on
the Retargetable Back Annotator (RBA) framework from [8]
(Fig. 1). In RBA, application C code is passed through a
generic cross-compiler front end to produce an intermediate
representation (IR), which is then further translated back into

compileable C form. Working at the IR allows typical compiler
front-end optimizations to be taken into account with little or
no penalty in execution speed. The IR inherently provides
a close representation of the final control data flow graph
(CDFG) of the target code and hence is able to accurately
reflect all data-dependent execution behavior. A mapping
between IR and binary is established by control flow analysis
of both CDFGs. Each basic block is characterized on a cycle-
accurate reference simulator to extract timing information.
Blocks are characterized in connection with all their possible
immediate predecessors to accurately account for pipeline
and other path-dependent intra-block effects. During back
annotation, the IR’s CDFG is then further augmented with
previously characterized, path-dependent timing information.
Finally, the IR code is compiled and simulated on the host to
accumulate overall timing results.

In this paper, we extend the existing back-annotation flow to
account for accurate estimation of architectural vulnerability
metrics. This is achieved by annotating the IR code with reg-
ister access information that is obtained from pair-wise basic
block characterizations on the reference simulator. Dynamic
register access traces and target memory access traces are then
generated in host simulation, and occupancy and AVF of the
register file and data cache are further calculated.

II. RELATED WORK

Many previous efforts has been focused on architecture-
level reliability modeling and estimation. Li et al. propose
an error injection based model to enable architecture level
analysis of soft errors and vulnerability estimations in modern
processors [9]. Programs are running on top of a probabilistic
error generation and propagation model. However, the need for
time-consuming simulation and observation limit the practical
usefulness of such approaches.

Mukherjee et al. proposed a systematic approach to evaluate
the AVF without actually injecting any errors [1]. The key
idea of AVF estimation is to track the subset of processor
state required for Architecturally Correct Execution (ACE).
For example, the AVF for a single-bit storage cell is simply
the fraction of time that it holds ACE bits. Assuming that all
cells have equal raw fault rates, the AVF for a structure is
the average AVF of its storage cells, or the average fraction
of its cells that hold ACE bits at any point in time. Based
on this analysis methodology, the evaluation of architecture
level reliability can be converted into the analysis of AVF and
further into instrumentation and profiling tasks to distinguish
ACE and un-ACE bits. However, time consuming micro-
architecture simulation and profiling is still needed, making it
hard to integrate this methodology into iterative design space
exploration across multiple architecture candidates and a wide
range of benchmarks.

Many approaches have been proposed to improve on these
early methods. Fu et al. characterize program vulnerability
to soft errors in a high-performance out-of-order execution
superscalar processor [10]. Their model includes instruction



BB_F

L1:
addi r29,r25,5120
...

BB_G

Basic Blocks in Binary 

Basic Block in Source 

BB_E

BB_F’BB_E’

BB_G’
If(CurBB == BB_E’){

RecordReg(R25, CycleCnt+3, R);
RecordReg(R29, CycleCnt+3, W);
incrDelay(17);
SP =  SP - 32;
}

else if(CurBB == BB_F’){
RecordReg(R25, CycleCnt+4, R);
RecordReg(R29, CycleCnt+4, W);
incrDelay(19);}

CurBB = BB_G’

...

ISS

Annotation 
Script

With Pred. BB_F:
Exec. Time :19 cycles
Read r25 at cycle 4
Write r29 at cycle 4

Write 

Execution Statistics

Parsing 
Script 

Dynamic Trace

... ...

With Pred. BB_E:
Exec. Time :17 cycles
Read r25 at cycle 3

Write r29 at cycle 3

With Pred. BB_F:
ITIME = 4
...
R a=read n=GPR i=29
R n=GPR i=29
SP: -32 
...

With Pred. BB_E:
ITIME = 3
...
R a=read n=GPR i=29
R n=GPR i=29
...

 BB_E’:
     …...
   If (j<4){ goto BB_G’;} 
 BB_F’:
      …...

 BB_G’:
      …...

Fig. 2. Register accesses annotation.

window, reorder buffer, function units and wakeup table struc-
tures, all of which will significantly contribute to the overall
architecture vulnerability. Their results show that reliability
is a function of the interactions between the application and
the hardware system, which is an important consideration
for architecture researchers. Suh et al. propose a reliability-
aware sampling-based approach called PHYS to reduce the
memory access simulation time for cache AVF estimation [11].
To reduce profiling requirements and simulation time, other
efforts decompose the AVF into different components, such
as Program Vulnerability Factor (PVF) and Hardware Vulner-
ability Factor (HVF), where the latter can be obtained through
static analysis of the hardware structures [12].

Although certain acceleration strategies are employed,
cycle-accurate simulations across the entire program execution
can not be avoided in the approaches above. As such, the
speed-up is largely limited. Machine learning or regression
based approaches have been proposed to deal with the simu-
lation time problem. Based on observed correlations between
performance metrics and AVF, Duan et al. proposed a ma-
chine learning approach to estimate the AVF and predict the
reliability behavior [13]. It uses Boosted Regression Trees,
a nonparametric, tree-based predictive modeling scheme, to
identify the correlation between the AVF of key processor
structures and various performance metrics. As an alternative,
linear regression has been used to capture the relationship
between other execution statistics and AVF for estimation of
runtime AVF variations [14]. Furthermore, analytical models
have been proposed to predict the AVF of a structure, in the
first order, using statistics collected from relatively inexpen-
sive profiling [15]. Finally, based on interval analysis [16],
executions can be divided into individual windows for instru-
mentation and profiling, where AVF is calculated using a first
order analytical model. In all cases, however, machine learning
or analytical approaches fail to capture many of the dynamic
complexities introduced by modern software and hardware.

Different from previous work, we estimate the AVF without
the need for expensive instruction set simulation by adapting
and extending source-level simulation concepts to the problem
of reliability estimation. The architectural behavior of the
entire execution is thereby natively simulated on the host,

leveraging fast source-level software execution and high-level
processor model simulation. Back-annotation of profiled target
characteristics ensures estimation accuracy, while host simu-
lation accurately captures all dynamic application/architecture
interactions.

III. HOST COMPILED AVF MODELING

The key idea in host-compiled modeling is to compile
and execute application code natively on the host with back-
annotated execution metrics obtained from target profiling. In
our work, the retargetable back-annotation process is extended
with a producer-consumer analysis to extract architectural
occupancy information during target profiling. In the host-
compiled model, target memory traces are regenerated based
on memory access information from debugger and application
intermediate representation (IR) and feed into a light-weight
cache model. With the back-annotated occupancy information
and reconstructed memory trace, the host-compiled simulation
code can duplicate the register file and data cache access
behavior of the target code and further provide target execution
tracing for dynamic AVF estimation.

The back-annotation flow for host-compiled AVF modeling
is shown in Fig. 2. During the profiling stage, the timing
of architectural activities, such as register accesses and stack
pointer changes are recorded for each basic block. Based on
the mapping table between the CDFG of the IR and the binary,
the IR code is then back-annotated with the corresponding
activity information. The memory trace reconstruction flow
is shown in Fig. 3. The base address information of global
and stack data from debugger and access index from IR are
combined and annotated into the C style IR code for the
memory trace reconstruction. The cache access outcome is
simulated online by a cache model and a fixed performance
penalty will be added in case of a cache miss.

The process in Fig. 2 and Fig. 3 is automated and introduces
negligible overhead that is amortized across the duration of
long-running simulations.

A. Basic Block Characterization

During the profiling stage, basic blocks are executed in
pairwise combination with all their possible immediate pre-
decessors. This pair-wise characterization corresponds to an
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edge profiling of the CDFG and is done to collect execution
metrics across all possible execution contexts, which provides
a trade-off between profiling cost and accuracy compared to
full path or standalone node profiling. Each collected block
pair is executed on the cycle-accurate reference simulator to
collect traces of various execution events. Note that during
the profiling, all cache lines are initialized to be valid and
every cache access is assumed to be a cache hit. The real
cache outcome will be calculated in the host-compiled model
and miss penalty will be added online as a fixed number of
cycles.

In our case, for AVF modeling, collected execution metrics
mainly include the cycle duration of the basic block under
characterization, the time stamp offsets of data structure ac-
cesses relative to the start of the current block and the change
of stack pointer ∆SP. The duration of each block will later
be used to accumulate the overall execution time, whereas the
actual register access times will be calculated online during
simulation as the sum of the accumulated execution time at
the entry of the current block plus the characterized access
offset. The ∆SP will also be accumulated to track the value
of stack pointer in order to calculate the base address of local
variable on stack.

As shown in the example of Fig. 2, BBG is characterized
with each of its immediate predecessors, BBE and BBF , and
two sets of execution metrics are both annotated into the IR.
The choice of picking the correct set of annotated metrics is
made dynamically during the host execution. For example, if in
a particular simulated execution of block BBG the previously
executed block was BB′

F , which corresponds to block BBF in
the binary, then the profiling metrics for predecessor BBF are
picked, and the access time for R29 is estimated as 3+Current
Execution Cycle, while the access type is a register write.

B. Memory Trace Reconstruction

The pairwise basic block characterization can only capture
limited architectural behaviors. The memory access trace,
which is essential for the cache AVF estimation, still require
the entire program execution. Instead of execute the target
binary on a cycle accurate simulator, we reconstruct the
memory trace on source-level with annotation of memory
information from debugger and application IR. The target
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memory access trace is then generated online in the host-
compiled model and feed into a cache model for the estimation
of the target data cache AVF.

Here we only consider the memory access to the global



data and stack data. Such simplification is based on the
observation that many embedded applications only implement
these two memory mechanisms in order to minimize the
resources utilization and power consumption.

1) Memory Access on Global Data: In order to reconstruct
the memory access of global data, their base addresses access
index are typically needed. The base addresses of static global
data are fixed address numbers and stored in the symbol table
of ELF file. We apply the original application binary (ELF)
to the GDB to obtain these information. The access index
however can be dynamically changed during execution and is
available in the form of C variables or expressions the source
file. In our case, we leverage our Retargetable Back Annotator
to parse and extract those index information during the IR to
C conversion stage. As the example shown in Fig. 3, the base
address of global array gArr is 0x1000085c. The access index
of gArr, ivtmp 71, can be captured in the application IR file
and translated to C style syntax by the IR2C script. Finally
such information is combined and annotated to the C style
IR file. During the execution, the base address of gArr is a
constant as annotated, and the dynamic changes of ivtmp 71
is calculated in the host-compiled model to reconstruct the
access trace.

2) Memory Access on Stack Data: Different from the global
data, the stack data access is more complicated since both
of their base addresses and access index can be changed
dynamically. Previous work relying on parsing original C code
does not clearly resolve this problem [17]. The stack allocation
decision can be only decided at the backend optimization stage
during compilation. Thus one can not rely on the application’s
IR or C source code to deduce the stack layout. Besides, even
the stack frame layout of each function can be decided, the
value of the stack pointer is changing dynamically during the
execution.

To track the value of the stack pointer, we create a recorder
variable SP in the source code. The change of stack pointer,
∆SP, is recorded in the basic block characterization and
annotated to the host compiled model. The host compiled
model will then accumulate such changes so that inside each
basic block we can know the current target stack pointer value.

In order to know the base addresses of the local variables in
current stack frame, we rely on the GDB and use command
info address symbol to get their base address offset related
with the current stack pointer. So for stack data the annotated
access address should be SP + offset + index. In the example
shown in Fig. 3, the base address of localArr is SP - 8,
index is ivtmp 71, so the annotated value should be SP - 8 +
ivtmp 71.

C. Occupancy Analysis

A soft error in a data storage structure will manifest itself
when faulty data is read out of a particular location. Thus,
those structures’ AVF can be obtained by estimating the
occupancy of all the variables waiting to be consumed, and
the estimation of AVF can be converted into the problem
of capturing the variable life times of all resident data. In

order to estimate the AVF for data storage structures, we
apply a producer-consumer analysis to dynamically capture
such variable live times during simulation.

1) Register File Analysis: Taking the register file as an
example, the AVF of each register can be estimated as the
ratio of the total sum of time periods when the register is
occupied relative to the length of the total program execution.
The overall AVF of the register file can be further calculated
as the average occupancy of all its registers over the entire
program execution.

Sample register access traces for registers R0, R1 and R2
are shown in Fig. 4. The key idea in this analysis is to capture
the time stamp at the end of each variable’s life time, which
we call checkpoint in our following explanation. A checkpoint
can either be a write operation to an occupied storage location
or the end of the entire execution. In both cases, the existing
data in the access location is guaranteed to not be consumed
again and the variable life time can be calculated. In this way,
the architectural occupancy of a certain storage structure is
divided into atomic variable life time periods defined by these
check points.

An example of the producer-consumer analysis process is
shown in Fig. 4. The execution begins with initial write oper-
ations to registers R0, R1 and R2. During the execution, R1
and R2 are then written again at times t2 and t3, respectively,
which are highlighted in red as the check points for both
registers. Finally, time t4 as the end of the execution will be the
checkpoint for all registers. During the simulation, the access
times of all the latest write and read operations are continously
recorded and updated. For each storage unit, whenever a
checkpoint is reached, the time difference between the latest
reading and writing will be calculated and accumulated as
the occupancy time. After the final checkpoint at the end
of simulation, all the storage cells’ occupancy time can be
obtained and later used for AVF estimation.

In Fig. 4, the start time t0 is first recorded as the latest
write operation time stamp for all registers. At t1, the latest
read operation time for all registers is recorded as t1. Then, at
t2, R1 reaches its check point, where the difference between
t1 and t0 is accumulated as R1’s occupancy time, represented
as shaded bar in Fig. 4. At t3, R2 reaches its checkpoint
and the difference between t1 and t0 is accumulated as its
occupancy time. Furthermore, the latest read time for R0 and
R1 is updated to t3. At the end of the execution, all the
registers hit their checkpoint. The period between t0 and t3 is
accumulated as R0′s occupancy time, and the period between
t2 and t3 is added to R1′s occupancy time. For R2, since there
is no subsequent read operation after t3, the write operation
at t3 is discarded. In this way, at the end of the execution, the
occupancy periods of all registers are captured as shown by
the shaded bars in the figure.

2) Data Cache Analysis: Different from register file, the
estimation of data cache can be non-trivial. In the case of
register, the beginning of a variable’s life is simply a register
write, so the checkpoints only include register write and the
execution end. For cache operations, there are four different



//Global variable to record register accesses

unsigned long  RegFile[32][3] = {{0,0,0},……,{0,0,0}};

//Accumulate occupancy time based on prod.-cons. analysis 

void RecordReg( int regID, 

         long accessCycle,

            int operation)

{

   if(operation == W) {//Check whether it is checkpoint

           if (RegFile[regID][read]>RegFile[regID][ write])

RegFile[regID][Acc]+= //Accumulate occupancy

       (RegFile[regID][read] - RegFile[regID][write]);

           RegFile[regID][read] = 0;

           RegFile[regID][write] = accessCycle; }

   if(operation == R) //If it is read operation, then update recorder

RegFile[regID][read] = accessCycle;

}

//Collect the occupancy duration at the end of execution

void FinalRegFileOccp()

{

int i;

for (i=0; i< 32; i++)//Checkpoint for all registers

if (RegFile[regID][read]>RegFile[regID][ write])

RegFile[regID][Acc]+= //Accumulate occupancy

    (RegFile[regID][read] - RegFile[regID][write]);

}

…

Fig. 5. Host-compiled AVF model for register file.

scenarios from the processor’s perspective which can be write
miss, write hit, read miss and read hit. Besides the write
operations, a cache miss on read can also mark the beginning
of a cache data life since a new cache line will be filled into
the cache.

So the checkpoints for the producer-consumer analysis
of data cache include write operations on both cache miss
and hit, read operations on cache miss and the end of a
program execution. Upon such events, the occupancy time can
be accumulated since the cache resident data in the access
location is either overwritten or evicted, and the old data is
guaranteed to not be consumed again. After identifying the
checkpoints, all the other analysis method of data cache is
same with register file.

D. AVF Estimation

1) Register File AVF Estimation: Sample code for imple-
mentation of the producer-consumer analysis of a register
file within an overall host-compiled simulation framework
is shown in Fig. 5. A global RegFile array is introduced
to record register file access history. For each register, the
array is used to store the latest write time, the latest read
time and the total accumulated occupancy time. The function
RecordReg is inserted into each basic block based on the
back annotation information as shown in Fig. 2. During host-
compiled simulation, RecordReg will be called to monitor
and record each register access point. Internally, the function
applies a producer-consumer analysis method to update the
corresponding access and occupancy time information in the
global RegFile array. Finally, at the end of the execution
and hence at the final checkpoint, a global FinalRegFileOccp
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will be invoked to collect all the remaining occupancy times
for every register.Note that the register IDs and cycle offsets
are obtained through pair-wise characterization as previously
described in Section III. In order to further obtain the absolute
access times, we also need to compute the accumulated execu-
tion time at the beginning of a block’s execution. We therefore
run the register accesses recorder along with a host-compiled
timing model, such that the producer-consumer analysis can
accurately take into account the global execution times. The
accessCycle for each operation is thereby calculated as the sum
of accumulated execution cycles at the entry of the current
basic block and the cycle offset of a particular access as
originally characterized relative to the beginning of the current
basic block.

2) Data Cache AVF Estimation: For the implementation
of the producer-consumer analysis of data cache, similarly,
a global DCache array is used to record the latest line-
fill/overwrite time, latest read on a cache hit time and the
total accumulated occupancy time for each word in the data
cache. During the execution, the memory trace generated from
host-compiled model is feed into a cache access recorder
function. As discussed before, the checkpoints in a cache
analysis are also dependent on the hit and miss information.
So before perform the producer-consumer analysis, we need
to invoke the cache model to decide cache access outcome,
and upon cache write and cache read miss, i.e. checkpoints,
the occupancy time will be accumulated. Otherwise if a cache
access is a read hit, the latest read recorder will be updated.

Based on the fact that the dynamic execution trace of a
program will usually contain many more executions of a basic
block than there are block instances in the static CDFG,
our approach of profiling each basic block through a one-
time effort and instead performing the producer and consumer
analysis during source-level execution can help to dramatically
reduce the required simulation time for reliability estimation.

IV. EXPERIMENTAL RESULTS

We have implemented our automated, host-compiled AVF
model generation flow in Python using Freescale’s retargetable
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Fig. 8. Occupancy of each individual register for Z4 target and small input data set.
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Fig. 7. Comparison of Register File AVF estimation for PowerPC Z4 target.

uADL ISS framework as cycle-accurate timing and micro-
architectural behavior reference [18]. To demonstrate the ben-
efits of our flow, we applied it to several standard benchmarks
running on a set of generic PowerPC based targets. All AVF
model generation and simulation was performed on a quad-
core Intel i7 workstation running at 2.6 GHz.

We selected three benchmarks (CRC32, SHA, and ADPCM)
from the MiBench suite with both small and large data sets
as well as a custom application (Eratosthenes Sieve) for
validating our flow [19]. The latter calculates prime numbers
in the range 0 to 500,000.

The target we evaluated is an in-order, e200 z4-like dual-
issue core with 16KB 4-way associative L1 data cache and
instruction cache. The target does not include floating point
unit or dynamic branch predictor. A gcc-4.4.5 cross-compiler
was used to generate code for both targets and provide
debugging information.

A. Register File and Data Cache Occupancy

By monitoring the producer and consumer pairs, we sim-
ulated the occupancy of each register throughout the entire
execution time of each application, and we calculated the
register file AVF as the average occupancy of each register.

Fig. 7 compare the register file occupancy results obtained
from the host-compiled (HC) models against cycle-accurate
simulations of complete application runs executed on the cor-
responding ISS reference models. The average occupancy error
is less than 0.98% The largest error of around 3.4% occurred
in the ADPCM benchmark. For all other benchmarks, the
estimation error is less than 0.1% on both targets. The ADPCM
benchmark exhibits relatively larger errors since its CDFG
has comparatively smaller blocks with a larger number of
consecutive branches. This leads to pipeline dependencies that
span across more than two blocks, which are not accurately
captured by our pair-wise characterization. Corresponding
timing inaccuracies manifest themselves as jitter in recorded
register access times, which in turn lead to errors in AVF
estimations.

Fig. 6 compare the data cache occupancy results obtained
from the HC models against cycle-accurate simulations ref-
erence models. The average occupancy error is less than
0.98% The largest error of around 3.4% occurred in the SHA
benchmark. For all other benchmarks, the estimation error is
less than 0.1% on both targets.

As expected, the occupancy and AVF data storage structures
do not vary significantly with the size of the data set.

Fig. 8 breaks the overall AVF of the whole register file into
AVF metrics for each individual register. Registers R13 to R22
are reserved and the occupancy is always 0%. As such, they are
omitted in Fig. 8. In the PowerPC calling convention, registers
R23 to R31 are usually used as link registers to store return
addresses. Hence, they will only be occupied when there are
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Fig. 9. Total runtime comparison.
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Fig. 10. Simulation speed comparison.

a number of function calls during the execution, which is the
case in the ADPCM and SHA benchmarks. Other benchmarks
consist of a single function only and link registers remain
unused. Results show that the host-compiled simulation can
accurately replicate the dynamic occupancy of each register
with less than 1% error on average. This shows the ability
of our approach to enable detailed analysis at fine structural
granularity.

B. Simulation Speed

We compared the simulation speed and runtime of our
approach against a reference ISS flow. Note that while running
the reference ISS, we only recorded the runtime without the
overhead of collecting and parsing of dynamically generated
traces, which is typically the most time-consuming bottleneck
of vulnerability analysis in a traditional flow.

Fig. 9 shows that for small data sets and short simulation
runs, the benefits of faster host-compiled simulations do not

outweigh the overhead introduced by the extra back-annotation
(BA) process. However, as input data sets and simulation
lengths grow, combined back-annotation and host-compiled
simulation runtimes increase at a much slower rate than the
total ISS time. Furthermore, back-annotation is a one-time
effort. Once generated, resulting host-compiled models can
be repeatedly resimulated under varying input scenarios. Note
that runtimes are dominated by back-annotation time, and HC
simulation time contributes less than 1%. The relatively large
runtime for SHA is due to its large number of basic blocks.
As a result, there is a relatively larger overhead introduced by
the back-annotation process.

Finally, Fig. 10 shows the simulation throughput of back-
annotated host-compiled models as compared to pure source-
or IR-level simulations as well as a traditional cycle-accurate
ISS execution. An average of 770 MIPS can be achieved by
our host-compiled simulation model. This is several orders of
magnitude faster than an equivalent ISS execution, and only
an average of 3.5 times slower than a native execution of the
unmodified application source code.

V. SUMMARY AND CONCLUSIONS

In this paper, we proposed a host-compiled architectural
vulnerability factor modeling methodology. Based on a retar-
getable back-annotation for basic block characterization and
profiling, our model is able to simulate the micro-architectural
occupancy behavior directly at source level. Applying an
online producer-consumer analysis for the simulated access
traces, our model is able to accurately duplicate the dy-
namic access patterns of storage structures. Our approach
can be easily integrated into traditional TLM-based virtual
platform prototypes to provide fast system reliability feedback
for HW/SW co-design and early design space exploration.
Applied to several standard benchmarks, the host-compiled
AVF modeling performance can reach up to 870 MIPS with
more than 96% accuracy compared to a traditional ISS-based
vulnerability estimation method.

Future work will include extending the approach to re-
liability modeling of other (micro-) architectural structures,
including support for more advanced out-of-order architectures
and additional benchmarks.
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