
Automated, Retargetable Back-Annotation for Host
Compiled Performance and Power Modeling

Suhas Chakravarty, Zhuoran Zhao, Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin
{suhas.chakravarty,zhuoran,gerstl}@utexas.edu

ABSTRACT
With traditional cycle-accurate or instruction-set simula-
tions of processors often being too slow, host-compiled or
source-level software execution approaches have recently be-
come popular. Such high-level simulations can achieve or-
der of magnitude speedups, but approaches that can achieve
highly accurate characterization of both power and perfor-
mance metrics are lacking. In this paper, we propose a novel
host-compiled simulation approach that provides close to
cycle-accurate estimation of energy and timing metrics in
a retargetable manner, using flexible, architecture descrip-
tion language (ADL) based reference models. Our auto-
mated flow considers typical front- and back-end optimiza-
tions by working at the compiler-generated intermediate rep-
resentation (IR). Path-dependent execution effects are accu-
rately captured through pairwise characterization and back-
annotation of basic code blocks with all possible predeces-
sors. Results from applying our approach to PowerPC tar-
gets running various benchmark suites show that close to
native average speeds of 2000 MIPS at more than 98% tim-
ing and energy accuracy can be achieved.

1. INTRODUCTION
Software developers typically rely on executable models

for quick and accurate feedback on the performance and
power of their designs. Traditionally, cycle-accurate instruc-
tion set simulators (ISSs), micro-architectural or RTL/gate-
level descriptions have been used to perform performance
and power simulations of applications executing on a proces-
sor core. Their drawback is that they are either inaccurate
or slow, since they require the processor micro-architecture
either to be fully abstracted or to be modeled in detail.

As an alternative to ISS-based models, high-level soft-
ware and processor models based on native, so-called host-
compiled or source-level software execution have recently
emerged. Such approaches model computation at the source
code level (typically in C-based form), which allows a purely
functional model to be natively compiled onto the host for
fastest possible execution. Timing and power information
is added by prior back-annotation of the source with esti-
mated target metrics. In complete host-compiled models,
annotated source code is then further wrapped into mod-
els of operating systems and processors that integrate into
standard transaction-level modeling (TLM) backplanes.

Previous host-compiled approaches have thus far mostly
focused on timing simulations. Furthermore, they are of-
ten tied to specific target architectures and limited in their
accuracy or speed of capturing basic path-dependent micro-

architectural execution effects. The main contribution of
this paper is to propose a fast and accurate host-compiled
simulation approach for automated and retargetable model-
ing of both performance and power consumption. Our flow
is built by annotating the compiler generated intermediate
representation (IR) of the application source code with es-
timates obtained from reference timing and energy models.
Working at the IR level allows us to accurately trace execu-
tion paths during simulation, where we establish a mapping
from the binary control flow graph (CFG) to the IR such
that compiler backend optimizations are fully considered.
We leverage existing, open-source architecture description
language (ADL) frameworks for cycle-accurate timing and
energy characterization across a wide range of targets.

We further apply a pairwise characterization of each ba-
sic code block with all possible predecessors to accurately
capture path-, state- and pipeline-dependent effects. Au-
tomated one-time back-annotation of code is fast (on the
order of 1-2 minutes), while resulting models are shown to
simulate at close to source-level speeds (of more than 2000
MIPS on average) with near cycle accuracy (less than 0.8%
average timing and energy error).

1.1 Related Work
There is a range of approaches that aim to annotate tim-

ing information obtained from a target model back into ap-
plication code either directly at the source [1–4] or at the
intermediate representation [5–8]. A problem with working
at the source level is that it can result in inherent inaccura-
cies in the mapping between target and source code under
aggressive control flow optimizations. To resolve ambigui-
ties, most approaches either fall back to [1] or establish a
separate path-tracking [2] via an IR-level simulation model.
We avoid these issues by working at the IR directly. Never-
theless, in the presence of aggressive compiler optimizations,
even IR and binary control flows do not always match. Ex-
isting approaches either disable optimizations and rely on
debug information [5], or obtain high-level estimates directly
from the IR [6] or source code [4]. We have found debug in-
formation of optimized code to be unreliable. We therefore
implement an approach that combines a flow graph match-
ing algorithm with debug information as fall back.

For accuracy, we perform back-annotation using cycle-
accurate simulation of actual target binaries at the level of
basic blocks. Other binary-based approaches instead rely on
static code analysis [1, 2, 5, 8], which is often overly conser-
vative and tied to a specific backend target. By contrast,
our approach is designed to be accurate and fully retar-

C Source Code

Frontend
Optimisations

(gcc)

Intermediate Rep.
(IR)

Backend

Binary

a=b=c=0;
if(a<=0) {
 a=1; c=2; }
……
printf(…);

bb_2:
 a = 1;
 b = 0;
 c = 2;
 goto bb_7;
bb_3:
…..
bb_7: printf(…);

Compile-able
Intermediate Code

IR to C

Timing
and

Energy
Back

Annotator

bb_2:
 a = 1; b = 0; c = 2;
 incrDelay(15); incrEnergy(2);
 cur_bb = BB_2;
 goto bb_7;
bb_3:
 …..
 incrDelay(delay[cur_bb][BB_3]);
 incrEnergy(energy[cur_bb][BB_3]);
 cur_bb = BB_3;
…..

Host-Compiled
Model

Compile-
able IR

Binary

Mapper

Mapping Table

Basic Block
Timing and
Energy Cz.

Augmented
Mapping Table

Back
Annotator

uADL
ISS

McPAT

Host-
Compiled

Model

Figure 1: Host-compiled back-annotation flow [15].

getable. Furthermore, since off-line characterization is only
performed once per static block pair, it is fast while being
able to take inter block timing into account. The work in [9,
10] relies on a similar approach for path-dependent charac-
terization of timing. However, they do not include power
estimation and are applied to relatively slow instruction-
set simulation or abstract pipeline models, neither of which
guarantee accurate characterization of all blocks.

Existing power estimation approaches at the source or in-
termediate levels employ coarse-grain models that assume
a constant or statistical energy consumption model at the
granularity of complete instructions or source-level opera-
tions [11–13]. They thus largely focus on predicting the exe-
cution time correctly to arrive at an estimate of overall power
consumed. By contrast, we leverage existing low-level ref-
erence models that operate at detailed micro-architectural
granularity and make no such assumptions. By following
a pairwise block characterization approach, we are able to
maintain the accuracy of such models while achieving fast
estimation and simulation times.

1.2 Flow Overview
Figure 1 shows our flow for automatic timing and energy

back-annotation of host-compiled models. The application
C code is passed through a generic cross-compiler front end
(gcc in our case) to produce an IR, which is then further
massaged back into compileable C form [14].

During following back annotation, the IR’s CFG is then
further augmented with timing and energy information. The
IR is first passed to the generic cross-compiler backend of the
chosen target processor (again, gcc in our case). The gener-
ated binary is then analyzed to extract its CFG and estab-
lish the mapping between basic blocks in the IR and binary.
This mapping is needed to accurately determine annotation
points in the IR. Basic blocks in the binary are then char-
acterized for timing and energy consumption. This is done
by executing them pairwise on a retargetable, cycle-accurate
ISS, which is automatically generated from an open-source
ADL infrastructure [16]. Execution statistics from the simu-

A

B C

A’

B’

a)

A

B

A’

B’ C’

b) A B

C

A’ B’

D E D’ E’

c) A

B C

D

A’

d)

Figure 2: Mapping of IR to binary control flows.

BB1 BB2

BB3

Exec flow 1

Exec flow 2

SS =A SS = B

SS – Sys

State

(registers,

mem,

pipeline)

Figure 3: Path dependency of processor state.

lation are further fed to a retargetable, McPAT-based refer-
ence power model of the chosen processor [17]. The resulting
timing and energy estimates per basic block are then back-
annotated into the compileable IR, aided by the mapping.
This final step creates the host-compiled model.

2. BACK-ANNOTATION
In the following, we describe the timing and energy back

annotation process at the core of our flow.

2.1 Mapping
After constructing the CFGs, a valid graph mapping needs

to be established in the presence of variations between the
two graphs due to compiler backend optimizations. Typical
mismatches between IR and binary CFGs are illustrated in
Figure 2. In the context of back-annotation, a key criterion
for a match to be valid is that the number of execution paths
traversed and passing through both nodes during program
execution has to be equal. We therefore perform a synchro-
nized depth-first traversal of both CFGs to identify legal
matches based on a control flow representation using both
loop and branch nesting levels. GDB’s mapping information
is used when multiple equally likely matches are possible, as
is the case in branches of if-then-else statements.

2.2 Basic Block Characterization
Accurate characterization is complicated by the fact that

the timing and energy consumption of a basic block can be
significantly affected by pipeline effects, which depend on the
state of the processor at the start of block the execution.
Hence the timing and energy consumption for a block is
determined by code that has previously executed (Figure 3).

To approximate this effect, we characterize each block
through pairwise executions with all of its possible predeces-
sors. As experiments will show, a two-level characterization
results in only a slight loss in accuracy in a few cases.

The presence of function calls in a basic block presents ad-
ditional considerations. In the same way as regular blocks,
during real execution the caller and callee can influence each

D

E F

……….

……….

……….

……….

……….

……….

f2

……….

……….

……….

……….

……….

……….

A

……….

……….

……….

G

……….

……….

f2();

……….

……….

……….

……….

……….

B

C

m1

B_1

B_2

Call

Return

Call

Figure 4: Function call characterization.

L2: stwx r10,r11,r9

...

Faddi r29,r25,5120

M

N

t1

t2

t3

t0

t4

t5

t6

addi r24,r29,10240

 addi r0,r8,1

rlwinm r9,r8,1,0,30

 addi r7,r0,r0

L1: addi r8,r7,4

 li r8,8

E

M

F

M

W

E

M

W

F

D

E

M

W

F

D

E

M

W

F

E

M

W

D

E

M

W

t7

t8

t9

t10

4

5

ins0

ins1

ins2

ins3

ins4

ins5

ins6

ins0

ins1

ins2

ins3

ins4

ins5

ins6

D

D

W

E

F

t11

6

t12

3

 li r25,42

E

M

W

ins7

D

Fins7

Commit TimeD

Fetch Time

F

E

M

W

D

F

E

M

W

D

F

E

M

W

D

F

E

M

W

D

D F

Stall

Stall

...

bdnz L1

...

...

2

2

2

2

t13

Figure 5: Inter-block timing characterization.

other’s timing. Figure 4 shows a CFG snippet for a hy-
pothetical application example. Consider the execution se-
quence A,B,D, F,G,B,C. The total execution time along
this path is given by:

TPath = TA + TB 1|A + TD|B 1 + TF |D +

TG|F + TB 2|G + TC|B 2,

where Ti|j denotes the execution time of basic block i given
that its immediate predecessor was block j. The equation
shows that timing-wise, B is divided into smaller sub-blocks
at the point of the function call to f2(), where the caller
and callee’s timings TD|B 1 and TB 2|G are influenced by
each other. Specifically, the processor state upon entry into
a function depends on where it is called from. Similarly,
state upon return to the callee depends on the last executed
block in the called function. To capture this interdepen-
dencies, caller and callee are characterized in conjunction
with each other. In our flow, blocks are split into sub-blocks
at the point of each function call. A function’s root basic
block is characterized for each point of call, by pairing it
up successively with all preceding sub-blocks. Likewise, the
sub-block following a function call is characterized with all
of the callee’s exit blocks containing an implicit or explicit
return statement.

2.2.1 Timing Characterization
To calculate the execution time of a basic block for a cer-

tain predecessor, the detailed trace generated from its pair-

Table 1: Benchmark summary.

Benchmark Suite Modifications Sim. instr.

SHA (Sm)
Security Disabled tail-call

14,674,926
SHA (Lg) 153,067,895
ADPCM (Sm)

Telecom -
36,658,548

ADPCM (Lg) 724,729,999
CRC32 (Sm)

Telecom Disable inlining
13,688,752

CRC32 (Lg) 266,112,122
Sieve - - 12,284,657

wise ISS execution is analyzed (Figure 5). We rely on the
difference in the fetch time instants of the first and last in-
structions in a characterized basic block to determine its
execution time. Given a sequence of overlapping executions
of successive blocks, annotating fetch delays is equivalent
to recording commit times. Any stall inside the processor
pipeline will propagate to successive instructions and even-
tually manifest itself both as delay in the stalled instruction’s
commit time as well as an equivalent delay in the fetch time
of a following instruction.

If any stall occurs between fetches of different blocks, the
execution time needs to be further adjusted to account for
the gap with respect to the predecessor’s end of execution.
In Figure 5, the stall penalty for the fetching stage of the first
instruction in basic block N is simply added to N ’s charac-
terized execution time. By contrast, in multi-issue micro-
architectures, the amount of overlap is subtracted from the
execution time of the characterized block.

2.2.2 Energy Characterization
Execution statistics such as instruction counts, types and

functional units accessed are extracted from the detailed
trace emitted during the ISS execution and further passed
into McPAT. Combining these statistics with the block’s
characterized execution timing and cycles, the power con-
sumption output from McPAT is then converted into an en-
ergy consumption figure for the block pair.

2.3 Back Annotation
The metrics gathered during the characterization step are

recorded in the mapping table. As the last step in our flow,
the mapping table is used for directing the annotation of
target metrics into the compileable IR at the correct points.

The IR annotations are in the form of time and energy
counters, a global array containing delay and energy esti-
mates for all possible basic block pairs, and corresponding
table lookups in each block to increment counters based on
the ID of the current block and its runtime predecessor. In
case of additional basic blocks in the binary, the annotation
of the timing data for such a bridging block in the IR is
done in the corresponding branch of the if-statement of its
predecessor.

3. EXPERIMENTS AND RESULTS
We have implemented our flow in Python and applied it a

subset of benchmarks from the MiBench suite. Back anno-
tations and simulations were performed on a quad-core Intel
i7 workstation running at 2.6 GHz. The uADL ISS [16] and
McPAT [17] were used as timing and energy references, re-
spectively.

Table 1 shows a summary of the benchmarks and the mod-
ification made to the original code or compilation process.
The targets we evaluated are a PowerPC in-order, e200 z4-

0s
100s
200s
300s
400s
500s
600s
700s
800s

SHA
(Small)

SHA
(Large)

ADPCM
(Small)

ADPCM
(Large)

CRC32
(Small)

CRC32
(Large)

Sieve

R
u

n
ti

m
e

HC+BA ISS+McPAT

Figure 6: Runtime Comparison.

0

1000

2000

3000

4000

5000

SHA
(Small)

SHA
(Large)

ADPCM
(Small)

ADPCM
(Large)

CRC32
(Small)

CRC32
(Large)

Sieve

M
IP

S

HC IR Source

Figure 7: Simulation speed.

like dual-issue and a e200 z6-like single-issue core with no
cache, MMU, floating point unit or dynamic branch predic-
tor. A gcc-4.4.5 cross-compiler was used to generate code.

3.1 Speed Results
Figure 6 shows average runtimes of the back-annotation

(BA) process for generation of final host-compiled simula-
tion models from the original C source code. Simulation
times of host-compiled models are compared against ISS and
McPAT runtimes in a traditional simulation setup. As re-
sults show, for short simulations, the benefits of faster host-
compiled simulations do not outweigh the overhead intro-
duced by the extra back-annotation process. However, as
input data sets and simulation lengths grow, combined back-
annotation and HC runtimes increase at a much slower rate
than total ISS plus McPAT times.

Figure 7 shows the simulation speeds of the host-compiled
(HC) models as compared to that of source and IR level sim-
ulations. As is evident, there is no degradation in simulation
speed by working with the IR instead of the source. On av-
erage, the host-compiled models are nearly 2100 times faster
than the ISS running at an average of around 2100 MIPS.

3.2 Timing and Energy Results
Resulting timing and energy errors are summarized in Fig-

ure 8 and Figure 9. For the z4 target, the maximum es-
timation errors in timing and energy are 0.6% and 1.0%,
respectively, while average errors are 0.2% and 0.3%. On
the z6 target, the maximum timing and energy errors are
2.2% and 0.8% with an average error of 0.8% and 0.4%,
respectively. Overall, results confirm that pairwise charac-
terization represents a good tradeoff between significantly
improved accuracy and low back-annotation runtime.

4. SUMMARY AND CONCLUSIONS
In this paper, we presented a framework for combined, fast

and accurate power and performance estimation in a host-
compiled simulation approach. Concerns of compiler opti-
mizations are addressed by working at the IR level. The ap-
proach is fully retargetable by virtue of utilizing a standard
ADL-based backend tool chain for timing and energy estima-
tion. Our flow and its subsequent automation was evaluated
on several industry-standard benchmarks executing on Pow-

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

SHA
(Small)

SHA
(Large)

ADPCM
(Small)

ADPCM
(Large)

CRC32
(Small)

CRC32
(Large)

Sieve

Er
ro

r
[%

]

z4 z6

Figure 8: Host-compiled timing accuracy.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

SHA
(Small)

SHA
(Large)

ADPCM
(Small)

ADPCM
(Large)

CRC32
(Small)

CRC32
(Large)

Sieve

Er
ro

r
[%

]

z4 z6

Figure 9: Host-compiled energy accuracy.

erPC targets. Results show order of magnitude speedups
yet high accuracy in source-level simulation as compared to
a cycle accurate ISS.

Future work will include development of data-dependent
power models, integration with existing cache, OS and pro-
cessor modeling approaches, and evaluation on a wider range
of target platforms, micro-architectures and benchmarks.

5. REFERENCES
[1] Z. Wang and J. Henkel, “Accurate source-level simulation of

embedded software with respect to compiler optimizations,” in
DATE, 2012.

[2] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and
accurate source-level simulation of software timing considering
complex code optimizations,” in DAC, 2011.

[3] H. Zabel and W. Müller, “An efficient time annotation technique in
abstract RTOS simulations for multiprocessor task migration,” in
DIPES, 2008.

[4] C. Brandolese et al., “Source-level execution time estimation of C
programs,” in CODES, 2001.

[5] Z. Wang and A. Herkersdorf, “An efficient approach for system-level
timing simulation of compiler-optimized embedded software,” in
DAC, 2009.

[6] E. Y. Hwang, S. Abdi, and D. Gajski, “Cycle approximate
retargettable performance estimation at the transaction level,” in
DATE, 2008.

[7] A. Bouchhima, P. Gerin, and F. Petrot, “Automatic instrumentation
of embedded software for high level hardware/software
co-simulation,” in ASP-DAC, 2009.

[8] J. Schnerr et al., “High performance timing simulation of embedded
software,” in DAC, 2008.

[9] R. Plyaskin and A. Herkersdorf, “Context-aware compiled simulation
of out-of-order processor behavior based on atomic traces,” in
VLSI-SoC, 2011.

[10] K.-L. Lin, C.-K. Lo, and R.-S. Tsay, “Source-level timing annotation
for fast and accurate TLM computation model generation,” in
ASP-DAC, 2010.

[11] C. Brandolese et al., “A multi-level strategy for software power
estimation,” in ISSS, 2000.

[12] C. Brandolese, S. Corbetta, and W. Fornaciari, “Software energy
estimates based on statistical characterisation of intermediate
compilation code,” in ISLPED, 2011.

[13] D. Calvo et al., “A multi-processing systems-on-chip native
simulation framework for power and thermal-aware design,” Journal
of Low Power Electronics, vol. 7, no. 1, pp. 2–16, 2011.

[14] A. Goswami and A. Gerstlauer, “ExtractCFG: A framework to enable
accurate timing back annotation of c language source code,” CERC,
UT Austin, Tech. Rep. UT-CERC-11-02, Aug. 2011.

[15] A. Gerstlauer et al., “Abstract system-level models for early
performance and power exploration,” in ASP-DAC, 2012.

[16] Freescale, “ADL Release 2.0.0,”
http://opensource.freescale.com/fsl-oss-projects.

[17] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO,
2009.

