
Automatic Calibration of Micro-Architecture Description
Models

†Zhuoran Zhao, ‡Gary Morrison, †Andreas Gerstlauer
†Electrical and Computer Engineering Department, The University of Texas at Austin

‡Freescale Semiconductor Inc.
†{zhuoran,gerstl}@utexas.edu, ‡ra0801@freescale.com

ABSTRACT
Cycle-accurate platform simulators are key components of
virtual prototyping for system level design. High-level ar-
chitecture description language (ADL) based instruction-set
simulation (ISS) models are often used to verify function-
ality and estimate system performance during early design
stages. However, development of such abstract models to
faithfully cover every micro-architecture detail is a tedious
and error-prone process, often resulting in performance mis-
matches between the cycle-accurate model and RTL. Thus,
time-consuming manual calibrations of high-level architec-
ture models against existing RTL code across a large set of
benchmarks are typically needed.

To address this problem, we propose an automated frame-
work for calibration of architecture models against RTL to
automatically discover and generate accurate platform sim-
ulators for rapid early exploration and development. Our
framework is based on open-sourced ADL environments from
industry, making use of open-source evolutionary algorithm
(EA) libraries to tune pre-defined parameters in a given tem-
plate and automatically derive accurate architecture models
for a given RTL processor. During the evaluation stage of
the calibration, multi-tiered fitness assessment is used to re-
duce the calibration time.

We verify our flow by calibrating parameterized proces-
sor model templates against RTL reference traces. Results
show that our framework can sucessfully generate architec-
ture model in an average of 8.1 hours with more than 98%
timing accuracy.

1. INTRODUCTION
Virtual prototyping is widely used in embedded system de-

sign methodologies for quick functional validation and per-
formance estimation at early desgin stages. Typical virtual
prototypes incoroporate cycle-accurate processor simulators
to get performance feedback and direct early exploration
and development. Cycle-accurate instruction-set simulation
(ISS) models automatically derived from high-level, easily
retargetable architecture description languages (ADLs) are
often used in this context. Although ADL-based flows al-
ready provide useful abstractions to quickly capture proces-
sor models, development of such models to faithfully cover
every micro-architecture detail is still a tedious and error-
prone process. Performance mismatches between the cycle-
accurate ISS model and RTL are very common. To resolve
such mismatches, manual calibrations of high-level architec-
ture models against existing RTL code across a large set
of benchmarks are typically needed, which is usually time-
consuming and lacking flexibility.

 Tier0

...

#define PREFETCH_BUFFER_SIZE 6

define (resources) {

 define (fetchunit Fetcher) {

 fetch_memory = Mem;

 entries

=PREFETCH_BUFFER_SIZE;

... }

...

param PREFETCH_BUFFER_SIZE

= {

 range = (5-7);

};

...

tier 0 {

 test EAluR01 {

 command =

 "regress --s=test1";

 weight = 675;

 };

 …};

Tier fileTier file uapl fileuapl file

EagaCal knobs.hknobs.h

Parameterized uadl fileParameterized uadl file

uadl2model

ISS model

teststeststeststeststeststests

Reference Timing Model

 Tier1 teststeststeststeststeststests

...

Figure 1: Calibration infrastructure overview.

To address this problem, we propose an automated frame-
work for calibration of architecture models against RTL. Our
framework automatically discovers and generates accurate
platform simulators for rapid early exploration and develop-
ment. In this report, we document our proposed framework
for automated model calibration. Our framework is based on
Freescale’s uADL (micro-architecture description language)
modeling infrastructure [1] and makes use of open-source
evolutionary optimization libraries to tune pre-defined pa-
rameters in a given template and automatically derive accu-
rate architecture models for a given RTL processor. We have
applyed our framework to automatically calibrate param-
eterized template model against PowerPC-based reference
models. In all cases, our framework was able to discover the
correct parameter set.

2. INFRASTRUCTURE OVERVIEW
Figure 1 shows an overview of our calibration infrastruc-

ture. The first step of the calibration is parametrizing the
existing uADL models with possible micro-architectural pa-
rameters. Most parameterization is accomplished through
C preprocessor text substitution performed by the uADL
compiler.

In order to specify the list of valid parameters and the cor-
responding ranges, we define a micro-architecture parame-
terization language (uapl) file. To evaluate each genome, i.e.
uADL instantiation with a valid set of parameters, we intro-
duce a multiple-tier benchmark hierarchy, which is specified
in a Tier file. The syntax rules of our uapl and Tier files
are fed into Lex and Yacc [2] to generate the correspond-
ing parser for our calibration tool. Then, the uapl and Tier
parser along with the calibration source code, which mainly
includes invocation commands for calibration components
and the evolutionary library are linked and compiled to gen-
erate our executable calibration tool called EagaCal.

During the start-up of EagaCal, the calibration tool will
read the uapl file to build up the encoding of parameters

into a genome and the initial population for the evolutionary
algorithm. Furthermore, the Tier file is read to specify the
benchmark sets for fitness assessment. Once input files have
been read, an iterative exploration is performed across the
given set of benchmarks until a pre-defined stop metric is
met, such as reaching a maximum number of generations or
hitting an accuracy threshold.

During the exploration, each genome is translated into an
automatically generated knobs file, which is in turn used
to compile the corresponding uADL model into an ISS ex-
ecutable using the existing uadl2model command. Finally,
the ISS’ performance accuracy will be evaluated on a se-
lected subset of a given set of benchmarks. These bench-
marks must previously have been run on the reference model
(usually RTL) to generate a set of reference timing traces,
which is one-time effort, and clustered into multiple tiers to
be dynamically added into the evaluation benchmark set.
During calibration, the timing result of each test case run-
ning on the generated ISS model will be compared against
the corresponding timing reference to get the performance
accuracy.

Finally, the average accuracy of each benchmark weighted
by the instruction count will be assigned as the fitness value
of the corresponding genome and further fed back into the
evolutionary algorithm.

3. UADL-MODEL PARAMETERIZATION
To perform the calibration, uADL models need to be made

explorable and tunable through parameterization. Most pa-
rameterization can be accomplished through C-preprocessor
text substitution. Parameterized uADL models use #de-
fined macros like any other program. The value assigned to
each macro can be defined in a separate header file, which
will be included by the uADL model and externally modified
by the evolutionary algorithms.

gen_file = “Knobs.h”
objective PIPELINE;
objective DIVIDE;
objective LOADS;
objective BRANCHES;
param PREFETCH_BUFFER_SIZE = {
 range = (5-7);
 mean = initial = 6;
 relevancy (PIPELINE)=1;
};
...

(a) uapl file

...
define (resources) {
 define (fetchunit Fetcher) {
 fetch_memory = Mem;
 entries=PREFETCH_BUFFER_SIZE;

...
 }
...

(b) uadl file

Figure 2: uADL parameterization.

To further specify the complete list of parameters and
their allowable value ranges (knobs), micro-architecture pa-
rameterization language (uapl) files are introduced into our
calibration infrastructure. Figure 2 shows abbreviated ex-
amples of a code snippet of a parameterized uADL model
(Figure 2(b)) and its corresponding uapl file (Figure 2(a)).
In the original uADL file, the number of entries in the fetch
unit can be an integer number in the range of 5-7. In the
parametrized uADL model in Figure 2(b), the integer num-
ber is replaced with a label PREFETCH BUFFER SIZE,
and the corresponding range of this label is then specified in
the uapl file in Figure 2(a). Its actual value is later defined

Select
Simulation

& Evaluation

uADL
Instantiation

Evolutionary
Algorithm

Fitness Assessment

2 0 3 5 6
2 0 0 8 8
...

Parameters files

Crossover

Mutate

#define fetch_buf 2
#define load_fwd 0
...

Population

Reference timing traces

Test CasesTier 0

Test CasesTier 1
... …

Parameterized uADL file

define (resources){
 entries=fetch_buffer
...

uADL/ADL

compiler

Cycle Accurate Simulators

Simulated timing tracesSimulated timing tracesSimulated timing traces

Reference timing tracesReference timing traces

Reference RTL

Accuracy
metrics

Figure 3: Genetic Algorithm calibration framework.

in a separate header file generated during the calibration
process according to the specifications from the uapl file.

Besides the example shown in Figure 2, more advanced
parameterizations such as pipeline configuration are also em-
ployed in our infrastructure.

4. EVOLUTIONARY CALIBRATION
An evolutionary algorithm (EA) is a generic population-

based metaheuristic optimization algorithm [3]. In our case,
we use a Genetic Algorithm (GA), a subclass of EA, to con-
struct our calibration infrastructure. GAs typically consist
of selection, genetic operators and termination. In this sec-
tion, the corresponding implementations and customizations
in our calibration framework will be illustrated.

The overall setup of our evolutionary calibration frame-
work is shown in Figure 3. As the value of each knob in
the calibration is selected from a set with finite discrete ele-
ments, we encode the choices of knobs into integer genomes.
Before the selection stage, each integer genome in the cur-
rent population is translated into header files with micro-
architecture parameter values. The header files are then
compiled with the parameterized uADL file to generate the
simulator instances, which are run through multiple tiers of
benchmarks to obtain the performance differences in com-
parison to the reference traces. The average accuracy of each
test case weighted by its total instruction count is assigned
as the fitness value of each genome. After this, tournament
selection is applied in the GA framework to generate the
next evolutionary generation from the current one.

After the selection stage, a uniform crossover operator is
used to randomly choose the crossover points among parent
genome pairs and generate off spring genomes, followed by
a mutation stage to randomly change each gene within a
valid range (as shown in the Evolutionary Algorithm block
in Figure 3).

The calibration framework will evolve the population until
it reaches a convergence point. In our case, we identify the
convergence by the improvement of the best individual. If
the best fitness value has no improvement for a threshold
number of consecutive populations, the algorithm will be
terminated and the results will be reported.

In the entire calibration framework, the fitness assess-
ment stage is the most time consuming process. To deal
with this problem, we further utilize parallelized compilation
and multi-tiered fitness assessment to reduce the calibration

Tier 0-1 benchmarks

Reference
Timing Traces

Accumulate absolute difference of
commit time for each instruction

Simple set of ALU
instructions

Tier 2 benchmarks

Mixed pair of ALU and
branch instructions

Tier 3 benchmarks

Simple set of memory
instructions

Tier 4 benchmarks

Mixed pair of ALU and
branch memory

instructions

Evaluated
Timing Traces

Tier 5 benchmarks

Industry strength
benchmarks

Record start to end time to
characterize the cumulative
timing effect

Reference
Execution time

Evaluated
Execution time

Figure 4: Multi-tiered benchmark hierarchy.

time, as will be described in more detail in the following
sections.

4.1 Parallelized compilation and simulation
Although the evolutionary algorithm has inter-generation

dependency, intra-generation parallelism can be exploited to
reduce the evaluation time. In our calibration framework,
the compilations and simulations for different genomes are
executed in parallel to reduce the evaluation time for one
generation. The user can specify the parallelism window
size and even migrate the compilation tasks among several
machines with the interface provided by our framework.

4.2 Multi-tiered fitness assessment
In the stage of fitness assessment, we set up a multi-tier

benchmark hierarchy, shown in Figure 4, to evaluate each
considered uADL instantiation. The first four tiers consist
of bottom-up, directed-random timing tests in which the
evaluation will accumulate absolute differences in issue and
commit times for each instruction between uADL and RTL,
or between uADL and reference uADL. To be more specific,
Tier 0 and 1 contain basic tests of the most fundamen-
tal ALU individual instruction classes and Tier 2 contains
combinations of those instruction classes, followed by Tier
3 with simple memory instructions sets and Tier 4 with
mixed pairs of ALU, memory instructions. The last tier is
introduced for the purpose of top-down, industry benchmark
based regression using compiled C code that, generally, rep-
resents realistic customer applications. Different from the
first five tiers, the uADL instantiation is tested in terms of
start-to-end time to characterize the total, cumulative tim-
ing effect of the entire model as a whole. By contrast, the
goal of bottom-up testing in the lower tiers is to study in
detail the instruction-by-instruction timing for different in-
struction classes. In both cases, cycle count differences are
divided by the total cycle counts to compute the final rela-
tive error metric (in percent error) of each test case.

The motivation of such a benchmark hierarchy is to cali-
brate the target model over different aspects while being able
to quickly prune the design space using multi-tier evaluation.
Moreover, dynamically adding tiers to the calibration frame-
work can also avoid running too many benchmarks during
the early generations, which largely reduces the evaluation
time during calibration.

This idea is shown in Figure 3 and Figure 4. The algo-

Table 1: Summary of uADL Parameters
Objectives Parameters

Pipeline

Prefetch buffer size;
Forward execution path is existing for
ALU, compare, load, multiplication
and devide instructions or not;

Memory Operations
Memory address bandwidth;
Memory read latency;
Memory write latency;

Multiplication

Latency of multiplication with:
1-8 leading zeros;
9-16 leading zeros;
17-24 leading zeros;
25-32 leading zeros;

Devide Divided by 0 is treated as special case or not;

Table 2: Calibration algorithm Parameters
Population Size 20
Crossover Rate 0.5
Mutation Rate 0.4
Parallelism Window Size 4
Population Steady Threshold 4
Maximum Generations 80

rithm will evaluate the population starting with Tier 0, until
the best fitness individual is not improved after a thresh-
old number of consecutive generations, Tier 1 is added into
the benchmark set and the whole population will be re-
evalutated by Tier 0 and Tier 1. The other tiers will be
added to the benchmark set in the same way and the algo-
rithm will be terminated when no improvement occurs once
all the tiers have been added.

For fitness assessment, the corresponding simulator in-
stance of a genome will go though all the test cases from
the tiers included in the current benchmark set, and the
negative average running error percentage of all test cases
weighted by total instruction counts will be calculated and
assigned as the genome’s individual fitness.

After running a genome with n test cases, we compute
the final fitness as the negative weigthed average of error
percentages (E), where each test case is weighted by its in-
struction count (W) specified in the tier file:

fitness = − W1∗E1+W2∗E2+...Wn∗En
W1+W2+...Wn

.

Currently we are using a single objective algorithm to ver-
ify the calibration performance against reference RTL traces.
Any multi-objective appraoch will probably find its useful-
ness if calibration for more advanced model introduces more
issues, but is a subject for future work.

5. EXPERIMENTS AND RESULTS
We use Evolving Objects (EO) [4], a template-based, ANSI-

C++ evolutionary computation library, to implement our
calibration framework. Calibrations were performed on a
quad-core Intel i7 workstation running at 2.6 GHz, on which
we applied a 4-way parallelization of the compilation pro-
cess. We applied our framework to calibrate an artificial pa-
rameterized model against reference RTL traces. Five tiers
of benchmarks were used without applying any industry-
strength top-down benchmarks in Tier 5.

A summary of the tunable uADL parameters in our ex-
preiments are shown in Table 1. During the calibration, indi-
viduals in the initial generation are randomly generated from
their corresponding value sets, and further evolve within the
valid range.

The calibration algorithm parameters used in our experi-

0.10%

1.00%

10.00%

100.00%

Av
g.

 w
ei

gh
te

d
er

ro
r

Tiered Non-tiered

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Av
g.

 w
ei

gh
te

d
er

ro
r

Generation

Add tier

Add tier

Add tier Add tier

Figure 5: Fitness by generations.

0 min

100 min

200 min

300 min

400 min

500 min

600 min

700 min

800 min

900 min

1000 min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R
u

n
ti

m
e

Generation

Non-tiered

Tiered

Figure 6: Accumulated execution time by generations.

Table 3: Calibration Runtime Statistics
Tiered Non-tiered Improvement

Avg. runtime 08:21:43 16:10:38 48.3%
Max. runtime 08:24:14 16:21:21 48.6%
Avg. generations 48 48 0%
Max. generations 48 48 0%

ments are as shown in Table 2 Note that the number of Pop-
ulation Steady Threshold is used to deicide whether a new
tier needs to be added into the benchmark set. In our case,
if no improvement of best fitness occurs for 4 consecutive
generations, then a new tier will be added. We compared
our multi-tiered fitness assessment with the case where all
the test cases are organized into one single tier, and recorded
the statistics of the algorithm behavior along with the gener-
ations evolved. For multi-tiered and non-tiered algorithms,
we collected results for 3 independent runs each.

Figure 5 and Figure 6 show a representative calibration
progress of applying our calibration framework to our exam-
ple model both with and without multi-tiered fitness assess-
ment, represented as“Tiered”and“Non-tiered”, respectively.
Figure 5 shows the absolute value of fitness for the best indi-
vidual recorded in each generation. Tiers are added right af-
ter generation 15, 21, 28 and 32. From the slope of the curve
we can see the new tiers are only added if the population
reached a steady state and can not be improved anymore
using the current benchmark set. The sudden decrease in
fitness after adding a new tier is due to re-evaluation based
on the new benchmark set.

Figure 6 shows the accumulated runtime of our frame-
work, Since the multi-tiered fitness assessment will start
with a single tier and only add new tiers if necessary, the
slope of the accumulated runtime curve starts with a small
rate and only increases when new tier is introduced, result-

ing in a much smaller average evaluation time across all tiers.
Thus, although the two approaches will give the same results
after a similar number of generations, the multi-tiered fit-
ness assessment can significantly reduce the total calibration
time.

Overall, results averaged over all 3 runs for each algo-
rithm(Table 3) show that our mult-tiered approach can re-
duce the calibration time by an average of 48.3% and in all
cases reduced the timing error comparing with RTL traces
to less than 2% after 43 generations.

6. SUMMARY AND CONCLUSIONS
In this paper, we presented a framework for automated

calibration of high-level cycle-accurate simulation models
against RTL and other reference models. Our framework is
based on tunable, parametrized uADL models from Freescale.
In our framework, the Evolving Objects (EO) library is used
with slight modifications as our calibration engine. Different
types of test cases are organized into a multi-tier benchmark
hierarchy to improve the calibration performance. Results
show that our framework can effectively calibrate parame-
terized uADL model against RTL timing traces and generate
architecture model with more than 98% timing accuracy in
an average of 8.1 hours.

7. REFERENCES
[1] The architectural description language project, ver 2.0.0. [Online].

Available: http://opensource.freescale.com/fsl-oss-projects

[2] “Lex and yacc,” in lex & yacc, 2nd Edition. O’Reilly Media, 1992, pp.
1–25.

[3] “An overview of evolutionary computation,” in Evolutionary
Computation for Modeling and Optimization. Springer New York,
2006, pp. 1–31.

[4] M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer, “Evolving
objects: A general purpose evolutionary computation library,”
Artificial Evolution, vol. 2310, pp. 829–888, 2002. [Online]. Available:
http://www.lri.fr/ marc/EO/EO-EA01.ps.gz

